Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4800705
1.
1. R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
http://dx.doi.org/10.1007/BF00614817
2.
2. T. A. Rost, T. A. Rabson, B. A. Stone, D. L. Callahan, and R. C. Baumann, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 38, 640 (1991).
http://dx.doi.org/10.1109/58.108863
3.
3. K. H. Kim, IEEE Electron Device Lett. 19, 204 (1998).
http://dx.doi.org/10.1109/55.678545
4.
4. H. Akazawa and M. Shimada, J. Vac. Sci. Technol. A 26, 281 (2008).
http://dx.doi.org/10.1116/1.2841486
5.
5. Y. B. Park, B. Min, K. J. Vahala, and H. A. Atwater, Adv. Mater. 18, 1533 (2006).
http://dx.doi.org/10.1002/adma.200502364
6.
6. L. Z. Hao, J. Zhu, W. B. Luo, H. Z. Zeng, Y. R. Li, W. Huang, X. W. Liao, and Y. Zhang, Appl. Phys. Lett. 95, 232907 (2009).
http://dx.doi.org/10.1063/1.3272108
7.
7. J. G. Yoon and K. Kim, Appl. Phys. Lett. 68, 2523 (1996).
http://dx.doi.org/10.1063/1.115842
8.
8. S. Tan, T. E. Schlesinger, and M. Migliuolo, Appl. Phys. Lett. 68, 2651 (1996).
http://dx.doi.org/10.1063/1.116270
9.
9. M. Tomar, V. Gupta, A. Mansingh, and K. Sreenivas, J. Phys. D: Appl. Phys. 34, 2267 (2001).
http://dx.doi.org/10.1088/0022-3727/34/15/305
10.
10. S. Shandilya, M. Tomar, K. Sreenivas, and V. Gupta, J. Lightwave Tech. 28, 3004 (2010).
http://dx.doi.org/10.1109/JLT.2010.2072906
11.
11. V. Gupta, P. Bhattacharya, Y. I. Yuzyuk, R. S. Katiyar, M. Tomar, and K. Sreenivas, J. Mater. Res. 19, 2235 (2004).
http://dx.doi.org/10.1557/JMR.2004.0322
12.
12. S. Shandilya, M. Tomar, K. Sreenivas, and V. Gupta, J. Appl. Phys. 105, 094105 (2009).
http://dx.doi.org/10.1063/1.3121509
13.
13. J. Gonzalo, C. N. Afonso, J. M. Ballesteros, A. Grosman, and C. Ortega, J. Appl. Phys. 82, 3129 (1997).
http://dx.doi.org/10.1063/1.366155
14.
14. S. Tan, T. Gilbert, C. Y. Hung, T. E. Schlesinger, and M. Migliuolo, J. Appl. Phys. 79, 3548 (1996).
http://dx.doi.org/10.1063/1.361407
15.
15. X. G. Wang, J. Zhu, H. Z. Zhang, T. C. Lee, T. Vo, T. A. Rabson, and M. A. Robert, Integrated Ferroelectrics 40, 171 (2001).
http://dx.doi.org/10.1080/10584580108010840
16.
16. Z. Xu, B. Kaczer, J. Johnson, D. Wouters, and G. Groeseneken, J. Appl. Phys. 96, 1614 (2004).
http://dx.doi.org/10.1063/1.1766085
17.
17. S. U. Lee, S. S. Kim, H. K. Jo, M. H. Park, J. W. Kim, and A. S. Bhalla, J. Appl. Phys. 102, 044107 (2007).
http://dx.doi.org/10.1063/1.2769786
18.
18. J. P. Han and T. P. Ma, Appl. Phys. Lett. 72, 1185 (1998).
http://dx.doi.org/10.1063/1.121008
19.
19. M. W. Allen, P. Miller, R. J. Reeves, and S. M. Durbin, Appl. Phys. Lett. 90, 062104 (2007).
http://dx.doi.org/10.1063/1.2450642
20.
20. M. H. Tang, Z. H. Sun, Y. C. Zhou, Y. Sugiyama, and H. Ishiwara, Appl. Phys. Lett. 94, 212907 (2009).
http://dx.doi.org/10.1063/1.3147859
21.
21. T. S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, Elect. Lett. 37, 595 (2001).
http://dx.doi.org/10.1049/el:20010403
22.
22. M. S. Kumar, R. R. Sumathi, N. V. Giridharan, R. Jayavel, and J. Kumar, J. Crys. Growth 237–239, 1176 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02152-2
23.
23. E. Cagin, D. Y. Chen, J. J. Siddiqui, and J. D. Phillips, J. Phys. D: Appl. Phys. 40, 2430 (2007).
http://dx.doi.org/10.1088/0022-3727/40/8/003
24.
24. L. Z. Hao, J. Zhu, Y. J. Liu, S. L. Wang, H. Z. Zeng, X. W. Liao, Y. Y. Liu, H. W. Lei, Y. Zhang, W. L. Zhang, and Y. R. Li, Thin Solid Films 520, 3035 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.048
25.
25. W. C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, Appl. Phys. Lett. 85, 2316 (2004).
http://dx.doi.org/10.1063/1.1790604
26.
26. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. (Wiley, New York, 2002), pp. 1744.
27.
27. Zhen Guo, Dongxu Zhao, Yichun Liu, Dezhen Shen, Jiying Zhang, and Binghui Li, Appl. Phys. Lett. 93, 163501 (2008).
http://dx.doi.org/10.1063/1.3003877
28.
28. S. M. Guo, Y. G. Zhao, C. M. Xiong, and P. L. Lang, Appl. Phys. Lett. 89, 223506 (2006).
http://dx.doi.org/10.1063/1.2393148
29.
29. Jiagang Wu and John Wang, J. Appl. Phys. 108, 034102 (2010).
http://dx.doi.org/10.1063/1.3460108
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4800705
Loading
/content/aip/journal/adva/3/4/10.1063/1.4800705
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4800705
2013-04-04
2016-12-02

Abstract

Lithium niobate (LiNbO or LN) ferroelectric films were grown on n-type Si (100) substrates using ZnO as buffer layers by pulse laser deposition technique. The microstructures and electrical properties of the heterojunctions were studied. X-ray diffraction results showed that single (001) orientation for the LN films can be promoted on Si (100) substrates with the buffer effect of the ZnO layers. Due to the ferroelectric polarizations of the LN films, hysteretic characteristics were observed from the capacitance-voltage () curves of the LN/ZnO/n-Si heterojunctions. Obvious photoresponse characteristics were exhibited in the fabricated heterojunction. High performance of the photoresponse of the heterojunction was shown, such as a large ratio, short photoresponse time, steady or states, and well reversible. These characteristics make it possible for the heterojunctions to develop multifunctional applications, such as memory devices, eletro-optic devices, and etc. The studied results show that the electrical properties of the heterojunctions were dependent greatly on the thickness of the ZnO buffers and the structural composition of the LN films. The results were discussed in terms of the band diagrams of the LN/ZnO/Si heterojunctions in this work.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4800705.html;jsessionid=96pTMay3A2bWsOrWXVosbXnx.x-aip-live-03?itemId=/content/aip/journal/adva/3/4/10.1063/1.4800705&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4800705&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4800705'
Right1,Right2,Right3,