Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802242
1.
1. J. F. Scott, Ferroelectric Memories, Advanced Microelectronics Vol. 3 (Springer, Heidelberg, 2000).
2.
2. O. Auciello, A. Dhote, R. Ramesh, B. T. Liu, S. Aggarwal, A. H. Mueller, N. A. Suvarova, and E. A. Irene, Integrated Ferroelectrics 46, 295306 (2002).
http://dx.doi.org/10.1080/10584580215376
3.
3. J. D. Baniecki, M. Ishii, T. Shioga, K. Kurihara,and S. Miyahara, Appl. Phys. Lett. 89, 162908 (2006).
http://dx.doi.org/10.1063/1.2357880
4.
4. R. Schafranek, S. Payan, M. Maglione, and A. Klein, Phys. Rev. B 77, 195310 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195310
5.
5. K. Szot, F. U. Hillebrecht, D. D. Sarma, M. Campagna, and H. Arend, Appl. Phys. Lett. 48, 490 (1986).
http://dx.doi.org/10.1063/1.96485
6.
6. S. Lenjer, O. F. Schirmer, H. Hesse, and Th. W. Kool, Phys. Rev. B 66, 165106 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165106
7.
7. V. A. Trepakov, A. I. Gubaev, S. E. Kapphan, P. Galinetto, F. Rosella, L. A. Boatner, P. P. Syrnikov, and L. Jastrabik, Ferroelectrics 334, 113 (2006).
http://dx.doi.org/10.1080/00150190600692773
8.
8. V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, M. D. Glinchuk, M. Maglione, A. G. Bilous, J. Rosa, and L. Jastrabik, J. Appl. Phys. 97, 073707 (2005).
http://dx.doi.org/10.1063/1.1868856
9.
9. A. Artemenko, C. Elissalde, U-C. Chung, C. Estournès, S. Mornet, I. Bykov, and M. Maglione, Appl. Phys. Lett. 97, 132901 (2010).
http://dx.doi.org/10.1063/1.3495779
10.
10. C. Elissalde, U-C. Chung, A. Artemenko, C. Estournes, R. Costes, M. Pate, J.-P. Ganne, S. Waechter, and M. Maglione, J. Am. Ceram. Soc. 95, 17 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2012.05311.x
11.
11. O. Bidault, M. Maglione, M. Actis, M. Kchikech, and B. Salce, Phys. Rev. B 52, 4191 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.4191
12.
12. O. Trithaveesak, J. Schubert, and Ch. Buchal, J. Appl. Phys. 98, 114101 (2005).
http://dx.doi.org/10.1063/1.2135891
13.
13. Liang Qiao and Xiao fang Bi, J. Phys. D: Appl. Phys. 42, 175508 (2009).
http://dx.doi.org/10.1088/0022-3727/42/17/175508
14.
14. E. Arveux, thesis Bordeaux, Darmstadt (2009), http://tel.archives-ouvertes.fr/tel-00461201/fr/.
15.
15. V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, M. D. Glinchuk, M. Maglione, D. Michau, J. Rosa, and L. Jastrabik, Appl. Phys. Lett. 87, 022903 (2005).
http://dx.doi.org/10.1063/1.1954900
16.
16. J. F. Scott, A. Q. Jiang, S. A. T. Redfern, Ming Zhang, and M. Dawber, J. of Appl. Phys. 94, 3333 (2003).
http://dx.doi.org/10.1063/1.1596715
17.
17. J. L. M. van Mechelen, D. van der Marel, C. Grimaldi, A. B. Kuzmenko, N. P. Armitage, N. Reyren, H. Hagemann, and I. I. Mazin, Phys. Rev. Lett. 100, 226403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.226403
18.
18. T. Kolodiazhnyi and S. C. Wimbush, Phys. Rev. Lett. 96, 246404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.246404
19.
19. M. D. Glinchuk, I. V. Kondakova, V. V. Laguta, A. M. Slipenyuk, and I. P. Bykov, Acta Phys. Pol. A 108, 4760 (2005).
20.
20. M. D. Glinchuk, A. N. Morozovska, A. M. Slipenyuk, and I. P. Bykov, Appl. Mag. Reson. 24, 33342 (2003).
http://dx.doi.org/10.1007/BF03166934
21.
21. A. M. Slipenyuk, I. V. Kondakova, M. D. Glinchuk, and V. V. Laguta, Phys. Status Solidi C 4, 1297300 (2007).
http://dx.doi.org/10.1002/pssc.200673877
22.
22. R. Waser and M. Klee, Integr. Ferroelectrics. 2, 23 (1992).
http://dx.doi.org/10.1080/10584589208215729
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802242
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802242
2013-04-12
2016-09-29

Abstract

We report a dielectric relaxation in BaTiO-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K) for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR) investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti-V(O) charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802242.html;jsessionid=wcuQlkWDy3jFQ0d1jFGE4yrg.x-aip-live-02?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802242&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802242'
Right1,Right2,Right3,