Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. F. Scott, Ferroelectric Memories, Advanced Microelectronics Vol. 3 (Springer, Heidelberg, 2000).
2. O. Auciello, A. Dhote, R. Ramesh, B. T. Liu, S. Aggarwal, A. H. Mueller, N. A. Suvarova, and E. A. Irene, Integrated Ferroelectrics 46, 295306 (2002).
3. J. D. Baniecki, M. Ishii, T. Shioga, K. Kurihara,and S. Miyahara, Appl. Phys. Lett. 89, 162908 (2006).
4. R. Schafranek, S. Payan, M. Maglione, and A. Klein, Phys. Rev. B 77, 195310 (2008).
5. K. Szot, F. U. Hillebrecht, D. D. Sarma, M. Campagna, and H. Arend, Appl. Phys. Lett. 48, 490 (1986).
6. S. Lenjer, O. F. Schirmer, H. Hesse, and Th. W. Kool, Phys. Rev. B 66, 165106 (2002).
7. V. A. Trepakov, A. I. Gubaev, S. E. Kapphan, P. Galinetto, F. Rosella, L. A. Boatner, P. P. Syrnikov, and L. Jastrabik, Ferroelectrics 334, 113 (2006).
8. V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, M. D. Glinchuk, M. Maglione, A. G. Bilous, J. Rosa, and L. Jastrabik, J. Appl. Phys. 97, 073707 (2005).
9. A. Artemenko, C. Elissalde, U-C. Chung, C. Estournès, S. Mornet, I. Bykov, and M. Maglione, Appl. Phys. Lett. 97, 132901 (2010).
10. C. Elissalde, U-C. Chung, A. Artemenko, C. Estournes, R. Costes, M. Pate, J.-P. Ganne, S. Waechter, and M. Maglione, J. Am. Ceram. Soc. 95, 17 (2012).
11. O. Bidault, M. Maglione, M. Actis, M. Kchikech, and B. Salce, Phys. Rev. B 52, 4191 (1995).
12. O. Trithaveesak, J. Schubert, and Ch. Buchal, J. Appl. Phys. 98, 114101 (2005).
13. Liang Qiao and Xiao fang Bi, J. Phys. D: Appl. Phys. 42, 175508 (2009).
14. E. Arveux, thesis Bordeaux, Darmstadt (2009),
15. V. V. Laguta, A. M. Slipenyuk, I. P. Bykov, M. D. Glinchuk, M. Maglione, D. Michau, J. Rosa, and L. Jastrabik, Appl. Phys. Lett. 87, 022903 (2005).
16. J. F. Scott, A. Q. Jiang, S. A. T. Redfern, Ming Zhang, and M. Dawber, J. of Appl. Phys. 94, 3333 (2003).
17. J. L. M. van Mechelen, D. van der Marel, C. Grimaldi, A. B. Kuzmenko, N. P. Armitage, N. Reyren, H. Hagemann, and I. I. Mazin, Phys. Rev. Lett. 100, 226403 (2008).
18. T. Kolodiazhnyi and S. C. Wimbush, Phys. Rev. Lett. 96, 246404 (2006).
19. M. D. Glinchuk, I. V. Kondakova, V. V. Laguta, A. M. Slipenyuk, and I. P. Bykov, Acta Phys. Pol. A 108, 4760 (2005).
20. M. D. Glinchuk, A. N. Morozovska, A. M. Slipenyuk, and I. P. Bykov, Appl. Mag. Reson. 24, 33342 (2003).
21. A. M. Slipenyuk, I. V. Kondakova, M. D. Glinchuk, and V. V. Laguta, Phys. Status Solidi C 4, 1297300 (2007).
22. R. Waser and M. Klee, Integr. Ferroelectrics. 2, 23 (1992).

Data & Media loading...


Article metrics loading...



We report a dielectric relaxation in BaTiO-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron) and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K) for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR) investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti-V(O) charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd