Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802874
1.
1. H. F. Kay, “Preparation and properties of crystals of barium titanate, BaTiO3,” Acta Cryst. 1, 229 (1948).
http://dx.doi.org/10.1107/S0365110X4800065X
2.
2. H. F. Kay and P. Vousden, “Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties,” Phil. Mag. 40, 1019 (1949).
3.
3. W. J. Merz, “The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals,” Phys. Rev. 76, 1221 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1221
4.
4. F. Devonshire, “Theory of ferroelectrics,” Adv. Phys. 3, 85 (1954).
http://dx.doi.org/10.1080/00018735400101173
5.
5. S.-E. Park, S. Wada, L. E. Cross, and T. R. Shrout, “Crystallographically engineered BaTiO3 single crystals for high performance piezoelectrics,” J. Appl. Phys. 86, 2746 (1999).
http://dx.doi.org/10.1063/1.371120
6.
6. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (second edition) (Chapman and Hall, London, 1992).
7.
7. K. Ullakko, J. K. Huang, C. Kanter, V. V. Kokorin, and R. C. O’Handley, “Large magnetic-field-induced strains in Ni2MnGa single crystal,” Appl. Phys. Lett. 69, 1966 (1996).
http://dx.doi.org/10.1063/1.117637
8.
8. R. D. James and M. Wuttig, “Magnetostriction of martensite,” Phil. Mag. A 77, 1273 (1998).
http://dx.doi.org/10.1080/01418619808214252
9.
9. R. C. O’Handley, “Model for strain and magnetization in magnetic shape memory alloys,” J. Appl. Phys. 83, 3263 (1998).
http://dx.doi.org/10.1063/1.367094
10.
10. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439, 957 (2006).
http://dx.doi.org/10.1038/nature04493
11.
11. H. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,” Nature 403, 281 (2000).
http://dx.doi.org/10.1038/35002022
12.
12. J. Bell and L. E. Cross, “A phenomenological Gibbs function for BaTiO3 giving correct E-field dependence of all ferroelectric phase changes,” Ferroelectrics 59, 197 (1984).
http://dx.doi.org/10.1080/00150198408240090
13.
13. M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E. Cross, “Thermodynamic theory of PbTiO3,” J. Appl. Phys. 62, 3331 (1987).
http://dx.doi.org/10.1063/1.339293
14.
14. M. J. Haun, “Thermodynamic theory of the lead-zirconate-titanate solid solution system,” Ph. D thesis: The Pennsylvania State University (1988).
15.
15. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Wiley, New Jersey, 2009).
16.
16. C. Kittel, Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys. 21, 541 (1949).
http://dx.doi.org/10.1103/RevModPhys.21.541
17.
17. S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, New York, 1997).
18.
18. H. Zhang, Polarization rotation theory for field-induced-phase transitions in BaTiO3 single crystal, arxiv: cond-mat/1207.3568 (2012).
19.
19. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971).
20.
20. G. Shirane, E. Sawaguchi, and Y. Takagi, “Dielectric Properties of Lead Zirconate,” Phys. Rev. 84, 476 (1951).
http://dx.doi.org/10.1103/PhysRev.84.476
21.
21. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S-E. Park, “A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution,” Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
22.
22. B. Jaffe, R. S. Roth, and S. Marzullo, “Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics,” J. Appl. Phys. 25, 809 (1954).
http://dx.doi.org/10.1063/1.1721741
23.
23. B. Noheda, “Structure and High-Piezoelectricity in Lead Oxide Solid Solutions,” Curr. Opin. Solid State Mater. Sci. 6, 27 (2002).
http://dx.doi.org/10.1016/S1359-0286(02)00015-3
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802874
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802874
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802874
2013-04-18
2016-10-01

Abstract

A phenomenological theory has been proposed for the diffusionless structural phase transitions in BaTiO single crystal and PbZrO -PbTiO solid solution here. It has been found that for BaTiO single crystal, both the phase transitions and the crystal structures can be predicted with the crystalline anisotropy constants and strain constants that depend on the temperature. For PbZrO -PbTiO solution, the morphotropic phase boundaries arise from the strong dependence of the crystalline anisotropy constants on the composition. The good agreement between the numerical results and experimental observations has shown that our theory is effective for the diffusionless structural phase transitions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802874.html;jsessionid=dxKjMyssRM1lmFrtSYdns9Zd.x-aip-live-06?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802874&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802874&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802874'
Right1,Right2,Right3,