Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802877
1.
1. C. G. Salzmann, P. G. Radaelli, E. Mayer, and J. L. Finney, Phys. Rev. Lett. 103, 105701 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.105701
2.
2. T. K. Hirsch and L. Ojamäe, J. Phys. Chem. B 108, 1585615864 (2004).
http://dx.doi.org/10.1021/jp048434u
3.
3. S. J. Singer and C. Knight, Advances in Chemical Physics 147, [book series] 1st. Ed, S. A. Rice and A. R. Dinner, eds., © 2012 (John Wiley and Sons, Inc., 2012).
4.
4. B. Kamb and B. L. Davis, Proc Natl Acad Sci U. S. A. 52, 14331439 (1964).
http://dx.doi.org/10.1073/pnas.52.6.1433
5.
5. J. M. Besson, P. Pruzan, S. Klotz, G. Hamel, B. Silvi, R. J. Nelmes, J. S. Loveday, R. M. Wilson, and S. Hull, Phys. Rev. B 49, 1254012550 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12540
6.
6. J.-L. Kuo and M. L. Klein, J. Phys. Chem. B 108, 1963419639 (2004).
http://dx.doi.org/10.1021/jp0482363
7.
7. J.-L. Kuo, Phys. Chem. Chem. Phys. 7, 37333737 (2005).
http://dx.doi.org/10.1039/b508736h
8.
8. J.-L. Kuo and W. F. Kuhs, J. Phys. Chem. B 110, 36973703 (2006).
http://dx.doi.org/10.1021/jp055260n
9.
9. K. Umemoto, R. M. Wentzcovitch, S. de Gironcoli, and S. Baroni, Chem. Phys. Lett. 499, 236240 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.09.065
10.
10. J. R. Errington, P. G. Debenedetti, Nature 409, 318321 (2001).
http://dx.doi.org/10.1038/35053024
11.
11. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393395 (1984).
http://dx.doi.org/10.1038/310393a0
12.
12. O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 7678 (1985).
http://dx.doi.org/10.1038/314076a0
13.
13. T. Loerting, C. Salzmann, I. Kohl, E. Mayer, and A. Hallbrucker, Phys. Chem. Chem. Phys. 3, 53555357 (2001).
http://dx.doi.org/10.1039/b108676f
14.
14. J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Phys. Rev. Lett. 89, 205503 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.205503
15.
15. T. Loerting, C. G. Salzmann, K. Winkel, and E. Mayer, Phys. Chem. Chem. Phys. 8, 28102818 (2006).
http://dx.doi.org/10.1039/b603159e
16.
16. T. Loerting, W. Schustereder, K. Winkel, C. G. Salzmann, I. Kohl, and E. Mayer, Phys. Rev. Lett. 96, 025702 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.025702
17.
17. K. Winkel, M. S. Elsaesser, E. Mayer and T. Loerting, J. Chem.Phys. 128, 044510 (2008).
http://dx.doi.org/10.1063/1.2830029
18.
18. R. J. Nelmes, J. S. Loveday, T. Strässle, C. L. Bull, M. Guthrie, G. Hamel, and S. Klotz, Nat. Phys. 2, 414418 (2006).
http://dx.doi.org/10.1038/nphys313
19.
19. D. T. Bowron, J. L. Finney, A. Hallbrucker, I. Kohl, T. Loerting, A. K. Soper, J. Chem. Phys. 125, 044510 (2006).
http://dx.doi.org/10.1063/1.2378921
20.
20. T. Loerting, K. Winkel, M. Seidl et al., Phys. Chem. Chem. Phys. 13, 87838794 (2011).
http://dx.doi.org/10.1039/c0cp02600j
21.
21. A. Charlesby, J. Polymer Sci. 10, 201211 (1953).
http://dx.doi.org/10.1002/pol.1953.120100208
22.
22. T. Loerting, V. V. Brazhkin, and T. Morishita, Adv. Chem. Phys. 143, 2982 (2009).
http://dx.doi.org/10.1002/9780470508602.ch2
23.
23. G. P. Johari, A. Hallbrucker, and E. Mayer, Nature 330, 552553 (1987).
http://dx.doi.org/10.1038/330552a0
24.
24. M. S. Elsaesser, K. Winkel, E. Mayer, and T. Loerting, Phys. Chem. Chem. Phys. 12, 708712 (2010).
http://dx.doi.org/10.1039/b917662d
25.
25. M. Seidl, M. S. Elsaesser, K. Winkel, G. Zifferer, E. Mayer, and T. Loerting, Phys. Rev. B 83, 100201R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.100201
26.
26. J. S. Tse, J. Chem. Phys. 96, 5482 (1992).
http://dx.doi.org/10.1063/1.462732
27.
27. J. S. Tse, D. D. Klug, C. A. Tulk, I. Swainson, E. C. Svensson, C. K. Loong, V. Shpakov, V. R. Belosludov, R. V. Belosludov, and Y. Kawazoe, Nature (London) 400, 647649 (1999).
http://dx.doi.org/10.1038/23216
28.
28. G. P. Johari, Phys. Chem. Chem. Phys. 2, 15671577 (2000).
http://dx.doi.org/10.1039/a908699d
29.
29. H. Schober, M. M. Koza, A. Tolle, C. Masciovecchio, F. Sette, and F. Fujara, Phys. Rev. Lett. 85, 41004103 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4100
30.
30. M. M. Koza, H. Schober, B. Geil, M. Lorenzen, and H. Requardt, Phys. Rev. B: Condens. Matter Mater. Phys. 69, 024204 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.024204
31.
31. O. Mishima, J. Chem. Phys. 100, 59105912 (1994).
http://dx.doi.org/10.1063/1.467103
32.
32. K. Winkel, E. Mayer, and T. Loerting, J. Phys. Chem. B 115, 1414114148 (2011).
http://dx.doi.org/10.1021/jp203985w
33.
33. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
34.
34. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
35.
35. C. Knight, S. J. Singer, J.-L. Kuo, T. K. Hirsch, L. Ojamäe, and M. L. Klein, Phys. Rev. E 73, 056113 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056113
36.
36. L. Cwiklik and V. Buch, Phys. Chem. Chem. Phys. 11, 12941296 (2009).
http://dx.doi.org/10.1039/b820031a
37.
37. S. Grimme, J Comput. Chem 25, 14631473 (2004).
http://dx.doi.org/10.1002/jcc.20078
38.
38. S. Grimme, J Comput. Chem 27, 17871799 (2006).
http://dx.doi.org/10.1002/jcc.20495
39.
39. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
40.
40. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 14561465 (2011).
http://dx.doi.org/10.1002/jcc.21759
41.
41. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, and M. Scheffler, J. Chem. Phys. 129, 194111 (2008).
http://dx.doi.org/10.1063/1.3012573
42.
42. K. Tonigold and A. Gross, J. Comput. Chem. 33, 695701 (2012).
http://dx.doi.org/10.1002/jcc.22900
43.
43. S. Yoo and S. S. Xantheas, J. Chem. Phys. 134, 121105 (2011).
http://dx.doi.org/10.1063/1.3573375
44.
44. See supplementary material at http://dx.doi.org/10.1063/1.4802877 for HBW and PSW crystal coordinates; xyz coordinates of selected lattices; and a sample CRYSTAL09 input deck. [Supplementary Material]
45.
45. R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilson, Z. Kristallogr. 220, 571573 (2005).
http://dx.doi.org/10.1524/zkri.220.5.571.65065
46.
46. PQS Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville, Arkansas 72703.
47.
47. A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).
http://dx.doi.org/10.1063/1.467146
48.
48. U. Buck, I. Ettischer, M. Melzer, V. Buch, and J. Sadlej, Phys. Rev. Lett. 80, 25782581 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2578
49.
49. Q. Shi, S. Kais, and J. S. Francisco, J. Phys. Chem. A 109, 1203612045 (2005).
http://dx.doi.org/10.1021/jp0550154
50.
50. D. J. Anick, J. Molec. Struct. (Theochem) 587, 97110 (2002).
http://dx.doi.org/10.1016/S0166-1280(02)00100-8
51.
51. R. M. Shields, B. Temelso, K. A. Archer, T. E. Morrell, and G. C. Shields, J. Phys. Chem. A 114, 1172511737 (2010).
http://dx.doi.org/10.1021/jp104865w
52.
52. H. M. Lee, S. B. Suh, and K. S. Kim, J. Chem. Phys. 114, 1074910756 (2001).
http://dx.doi.org/10.1063/1.1374926
53.
53. G. S. Fanourgakis, E. Aprà, W. A. de Jong, and S. S. Xantheas, J. Chem. Phys. 122, 044510 (2008).
54.
54. D. J. Anick, J. Molec. Struct. (Theochem) 587, 8796 (2002).
http://dx.doi.org/10.1016/S0166-1280(02)00101-X
55.
55. S. M. Jackson, V. M. Nield, R. W. Whitworth, M. Oguro, and C. C. Wilson, J. Phys. Chem. B 101, 61426145 (1997).
http://dx.doi.org/10.1021/jp9632551
56.
56. Z. Raza, D. Alfè, C. G. Salzmann, J. Klimeš, A. Michaelides, and B. Slater, Phys. Chem. Chem. Phys. 13, 1978819795 (2011).
http://dx.doi.org/10.1039/c1cp22506e
57.
57. E. Whalley, D. D. Klug, and Y. P. Handa, Nature 342, 782783 (1989).
http://dx.doi.org/10.1038/342782a0
58.
58. E. Whalley, D. D. Klug, Y. P. Handa, E. C. Svensson, J. H. Root, and V. F. Sears, J. Molec. Struct. 250, 337349 (1991).
http://dx.doi.org/10.1016/0022-2860(91)85040-A
59.
59. J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Phys. Rev. Lett. 88, 225503 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.225503
60.
60. C. G. Salzmann, P. G. Radaelli, B. Slater, and J. L. Finney, Phys. Chem. Chem. Phys. 13, 1846818480 (2011).
http://dx.doi.org/10.1039/c1cp21712g
61.
61. Y. Yoshimura and H. Kanno, J. Phys. Condens. Matter 14, 1067110674 (2002).
http://dx.doi.org/10.1088/0953-8984/14/44/354
62.
62. Y. Yoshimura, R. J. Hemley, and H. K. Mao, Chem. Phys. Lett. 400, 511514 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.10.139
63.
63. Y. Yoshimura, High Press. Res. 29, 542547 (2009).
http://dx.doi.org/10.1080/08957950903384982
64.
64. Y. Yoshimura, High Press. Res. 31, 172177 (2011).
http://dx.doi.org/10.1080/08957959.2010.548332
65.
65. P. H. Handle, T. Loerting, High Press. Res. 31, 488490 (2011).
http://dx.doi.org/10.1080/08957959.2011.602677
66.
66. Y. Yoshimura, High Press. Res. 31, 491492 (1991).
http://dx.doi.org/10.1080/08957959.2011.602678
67.
67. Y. P. Handa, D. D. Klug, and E. Whalley, J. Chem. Phys. 84, 70097010 (1986).
http://dx.doi.org/10.1063/1.450622
68.
68. Y. P. Handa, O. Mishima, and E. Whalley, J. Chem. Phys. 84, 27662770 (1986).
http://dx.doi.org/10.1063/1.450301
69.
69. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
70.
70. O. A. von Lilienfeld and A. Tkatchenko, J. Chem. Phys. 132, 234109 (2010).
http://dx.doi.org/10.1063/1.3432765
71.
71. A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
72.
72. C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, and J. L. Finney, Science 311, 17581761 (2006).
http://dx.doi.org/10.1126/science.1123896
73.
73. O. Mishima and Y. Suzuki, Nature 419, 599603 (2002).
http://dx.doi.org/10.1038/nature01106
75.
75. D. D. Klug, E. Whalley, E. C. Svensson, J. H. Root, and V. F. Sears, Phys. Rev. B 44, 841844 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.841
76.
76. K. Winkel, M. Bauer, E. Mayer, M. Seidl, M. S. Elsaesser, and T. Loerting, J. Phys.: Condens. Matter 20, 494212 (2008).
http://dx.doi.org/10.1088/0953-8984/20/49/494212
77.
77. K. Winkel, M. S. Elsaesser, E. Mayer, and T. Loerting, J. Chem. Phys. 128, 044510 (2008).
http://dx.doi.org/10.1063/1.2830029
78.
78. E. Whalley, J. Chem. Phys. 81, 40874092 (1984).
http://dx.doi.org/10.1063/1.448153
79.
79. J. Wang, G. Román-Pérez, Jose M. Soler, Emilio Artacho, and M.-V. Fernández-Serra, J. Chem. Phys. 134, 024516 (2011).
http://dx.doi.org/10.1063/1.3521268
80.
80. A. Møgelhøj, A. K. Kelkkanen, K. T. Wikfeldt, J. Schiøtz et al., J. Phys. Chem. B 115, 1414914160 (2011).
http://dx.doi.org/10.1021/jp2040345
81.
81. W. Massa (transl. R. O. Gould), Crystal Structure Determination (2nd ed.), ISBN 3-540-20644-2 (Springer-Verlag, 2004).
82.
82. C. Wilson, Crystallography Reviews 15(1), 356, Taylor and Francis, Ltd. (2009).
http://dx.doi.org/10.1080/08893110802564245
83.
83. H. H. Chen and C. L. Yiu, Phys. Lett. A 48(2), 7778 (1974).
http://dx.doi.org/10.1016/0375-9601(74)90407-1
84.
84. T. M. Haridasan and G. Sathyamurthy, J. Phys. Chem. Solids 51(11), 13291332 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90012-5
85.
85. G. Boato, P. Cantini, C. Salvo, R. Tatarek, S. Terreni, Surface Science 114, 485497 (1982).
http://dx.doi.org/10.1016/0039-6028(82)90700-2
86.
86. P. Cantini, G. Boato, C. Salvo, R. Tatarek, S. Terreni, Physica B+C 108, 955956 (1981).
http://dx.doi.org/10.1016/0378-4363(81)90781-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802877
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802877
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802877
2013-04-18
2016-12-05

Abstract

Of the fifteen known crystalline forms of ice, eleven consist of a single topologically connected hydrogen bond network with four H-bonds at every O. The other four, Ices VI–VIII and XV, consist of two topologically connected networks, each with four H-bonds at every O. The networks interpenetrate but do not share H-bonds. This article presents two new periodic water lattice families whose topological connectivity is “atypical”: they consist of many two-dimensional layers that share no H-bonds. Layers are held together only by dispersion forces. Within each layer there are still four H-bonds at each O. Called “Hexagonal Bilayer Water” (HBW) and “Pleated Sheet Water” (PSW), they have computed densities of about 1.1 g/mL and 1.3 g/mL respectively, and nearest neighbor O-coordination is 4.5 to 5.5 and 6 to 8 respectively. Using density functional theory (BLYP-D/TZVP), various proton ordered forms of HBW and PSW are optimized and categorized. There are simple pathways connecting Ice-Ih to HBW and HBW to PSW. Their computed properties suggest similarities to the high density and very high density amorphous ices (HDA and VHDA) respectively. It is unknown whether HDA, VHDA, and Low Density Amorphous Ice (LDA) are fully disordered glasses down to the molecular level, or whether there is some short-range local order. Based on estimated radial distribution functions (RDFs), one proton ordered form of HBW matches HDA best. The idea is explored that HDA could contain islands with this underlying structure, and likewise, that VHDA could contain regions of PSW. A “microlattice model version 1” (MLM1) is presented as a device to compare key experimental data on the amorphous ices with these atypical structures and with a microlattice form of Ice-XI for LDA. Resemblances are found with the amorphs’ RDFs, densities, Raman spectra, and transition behaviors. There is not enough information in the static models to assign either a microlattice structure or a partial microlattice structure to any amorphous ice phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802877.html;jsessionid=o_Xhii4t2KPqNhwSSI9Dqa1J.x-aip-live-06?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802877&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802877&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802877'
Right1,Right2,Right3,