Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802880
1.
1. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Optics Express 8(12), 655663 (2001).
http://dx.doi.org/10.1364/OE.8.000655
2.
2. J.-W. Liaw, “New surface integral equations for the light scattering of multi-metallic nanoscatterers,” Eng. Analysis Boundary Methods 31, 299310 (2007).
http://dx.doi.org/10.1016/j.enganabound.2006.09.009
3.
3. V. Giannini and J. A. Sànchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green's theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24(9), 28222830 (2007).
http://dx.doi.org/10.1364/JOSAA.24.002822
4.
4. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Sol. (b) 245(1), 919 (2008).
http://dx.doi.org/10.1002/pssb.200743225
5.
5. V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. J. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv Mat 20, 4288 (2008).
http://dx.doi.org/10.1002/adma.200703214
6.
6. A. M. Kern and O. J. F. MartinSurface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26(4), 732740 (2009).
http://dx.doi.org/10.1364/JOSAA.26.000732
7.
7. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28(7), 13411348 (2011).
http://dx.doi.org/10.1364/JOSAA.28.001341
8.
8. R. Rodríguez-Oliveros and J. A. Sánchez-GilLocalized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt Express 19(13), 1220819 (2011).
http://dx.doi.org/10.1364/OE.19.012208
9.
9. G. Schider, J. R. Krenn, W. Gotschy, B. Lambrecht, H. Ditlbacher, A. Leitner, and R. F. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 38253830 (2001).
http://dx.doi.org/10.1063/1.1404425
10.
10. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B 70(12), 12511315 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125113
11.
11. M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, “Optical resonances on sub-wavelength lamellar gratings,” Opt. Exp. 16(26), 2200322028 (2008).
http://dx.doi.org/10.1364/OE.16.022003
12.
12. A. Mendoza-Suárez, F. Villa-Villa, and J. A. Gaspar-Armenta, “Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals,” J. Opt. Soc. Am. B 23(10), 22492256 (2006).
http://dx.doi.org/10.1364/JOSAB.23.002249
13.
13. F. Lopes-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. A. Sanchez-Jil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012).
http://dx.doi.org/10.1088/1367-2630/14/2/023035
14.
14. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Materials 9, 707715, (2010).
http://dx.doi.org/10.1038/nmat2810
15.
15. H. Lochbihler, “Enhanced transmission of TE polarized light through wire gratings,” Phys. Rev. B 79(24), 2454278 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245427
16.
16. R. Gomez-Medina, M. Laroche, J. J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Exp. 14(9), 37303737 (2006).
http://dx.doi.org/10.1364/OE.14.003730
17.
17. V. O. Byelobrov, J. Ctyroky, T. M. Benson, R. Sauleau, A. Altintas, and A. I. Nosich, “Low-threshold lasing eigenmodes of an infinite periodic chain of quantum wires,” Opt. Lett. 35(21), 36343636 (2010).
http://dx.doi.org/10.1364/OL.35.003634
18.
18. V. O. Byelobrov, T. M. Benson, and A. I. Nosich, “Near and far fields of high-quality resonances of an infinite grating of sub-wavelength wires,” in Proc. European Conf. Microwaves (EuMC-11), Manchester, 858861 (2011).
19.
19. D. M. Natarov, V. O. Byelobrov, R. Sauleau, T. M. Benson, and A. I. Nosich, “Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires,” Opt. Exp. 19(22), 2217622190 (2011).
http://dx.doi.org/10.1364/OE.19.022176
20.
20. T. L. Zinenko, A. I. Nosich, and Y. Okuno, “Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings,” IEEE Trans. Antennas Propag. 46, 14981505 (1998). [Note that, in the H-case, narrow grating resonances were missing in that paper because of too coarse grid of computation points, in frequency.]
http://dx.doi.org/10.1109/8.725282
21.
21. T. L. Zinenko and A. I. Nosich, “Plane wave scattering and absorption by flat gratings of impedance strips,” IEEE Trans. Antennas Propag. 54(7), 20882095 (2006).
http://dx.doi.org/10.1109/TAP.2006.877189
22.
22. T. L. Zinenko, M. Marciniak, and A. I. Nosich, “Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization,” IEEE J. Selected Topics in Quantum Electronics 19(3), DOI:10.1109/JSTQE.2012.2227685 (2013).
http://dx.doi.org/10.1109/JSTQE.2012.2227685
23.
23. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, et al., “Design of multipolar plasmon excitations in silver nanoparticles,” App. Phys. Lett. 77, 33793381 (2000).
http://dx.doi.org/10.1063/1.1327615
24.
24. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt Exp. 15(26), 1773617746 (2007).
http://dx.doi.org/10.1364/OE.15.017736
25.
25. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. QuidantSpectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.116805
26.
26. L. J. Anderson, C. M. Payne, Y. R. Zhen, P. Nordlander, and J. A. Hafner, “A tunable plasmon resonance in gold nanobelts,” Nano Lett. 11(11), 5034 (2011).
http://dx.doi.org/10.1021/nl203085t
27.
27. R. A. Depine and D. C. Skigin, “Scattering from metallic surfaces having a finite number of rectangular grooves,” J. Opt. Soc. Am. A 11, 28442850 (1994).
http://dx.doi.org/10.1364/JOSAA.11.002844
28.
28. K. M. Mitzner, “Effective boundary conditions for reflection and transmission by an absorbing shell of arbitrary shape,” IEEE Trans. Antennas Propag. 16, 706712 (1968).
http://dx.doi.org/10.1109/TAP.1968.1139283
29.
29. G. A. Grinberg, “Boundary conditions for the electromagnetic field in the presence of thin metallic shells,” Radio Engineering and Electronics 26(12), 24932499 (1981).
30.
30. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets,” IEEE Antennas Propag. Mag. 35, 1425 (1993).
http://dx.doi.org/10.1109/74.248480
31.
31. J. P. Kottmann and O. J. F. Martin, “Accurate solution of the volume integral equation for high permittivity scatterers,” IEEE Trans. Antennas Propag. 48, 17191726 (2000).
http://dx.doi.org/10.1109/8.900229
32.
32. J. P. Kottmann and O. J. F. Martin, “Plasmon resonances of silver nanowires with a non-regular cross section,” Phys. Rev. B 64(23), 23540210 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.235402
33.
33. O. V. Shapoval, R. Sauleau, and A. I. Nosich, “Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nystrom-type algorithm,” IEEE Trans. Antennas Propag. 59(9), 33393346 (2011).
http://dx.doi.org/10.1109/TAP.2011.2161547
34.
34. V. Delgado and R. Marques, “Surface impedance model for extraordinary transmission in 1D metallic and dielectric screens,” Opt. Exp. 19(25), 2529025297 (2011).
http://dx.doi.org/10.1364/OE.19.025290
35.
35. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 0574034 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.057403
36.
36. H. Lochbihler and R. A. Depine, “Properties of TM resonances on metallic slit gratings,” Appl. Opt. 51(11), 17291741 (2012).
http://dx.doi.org/10.1364/AO.51.001729
37.
37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 43704379 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802880
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802880
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802880
2013-04-18
2016-12-07

Abstract

We study numerically the optical properties of the periodic in one dimension flat gratings made of multiple thin silver nanostrips suspended in free space. Unlike other publications, we consider the gratings that are however made of strips that are . Our analysis is based on the combined use of two techniques earlier verified by us in the scattering by a single thin strip of conventional dielectric: the generalized (effective) boundary conditions (GBCs) imposed on the strip median lines and the Nystrom-type discretization of the associated singular and hyper-singular integral equations (IEs). The first point means that in the case of the metal strip thickness being only a small fraction of the free-space wavelength (typically 5 nm to 50 nm versus 300 nm to 1 m) we can neglect the internal field and consider only the field limit values. In its turn, this enables reduction of the integration contour in the associated IEs to the strip median lines. This brings significant simplification of the scattering analysis while preserving a reasonably adequate modeling. The second point guarantees fast convergence and controlled accuracy of computations that enables us to compute the gratings consisting of hundreds of thin strips, with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice resonances) in the scattering and absorption cross-sections of sparse multi-strip gratings, in addition to better known localized surface-plasmon resonances on each strip. The grating modes, which are responsible for these resonances, have characteristic near-field patterns that are distinctively different from the plasmons as can be seen if the strip number gets larger. In the E-polarization case, no such resonances are detectable however the build-up of Rayleigh anomalies is observed, accompanied by the reduced scattering and absorption.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802880.html;jsessionid=1sBlQLX6VBr8eXP1n9sohUFD.x-aip-live-06?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802880&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802880&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802880'
Right1,Right2,Right3,