1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Quantum entanglement based on surface phonon polaritons in condensed matter systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/4/10.1063/1.4802887
1.
1. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, Phys. Rev. A 50, 5122 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.5122
2.
2. K. K. Ng, D. V. Strekalov, T. B. Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat, Phys. Rev. A 54, 1 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.R1
3.
3. E. Altewischer, M. P. van Exter, and J. P. Woerdman, Nature 418, 304 (2002).
http://dx.doi.org/10.1038/nature00869
4.
4. S. Fasel, M. Halder, N. Gisin, and H. Zbinden, New J. Phys. 8, 13 (2006).
http://dx.doi.org/10.1088/1367-2630/8/1/013
5.
5. A. Bartels, T. Dekorsy, and H. Kurz, Phys. Rev. Lett. 84, 2981 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2981
6.
6. K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, Nat. Photon. 6, 41 (2012).
http://dx.doi.org/10.1038/nphoton.2011.296
7.
7. S. S. Ng, Z. Hassan, and H. Abu Hassan, Appl. Phys. Lett. 90, 081902 (2007).
http://dx.doi.org/10.1063/1.2645970
8.
8. S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909 (2009).
http://dx.doi.org/10.1021/nl901208v
9.
9. J. Le Gall, M. Olivier, and J. J. Greffet, Phys. Rev. B 55, 10105 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.10105
10.
10. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, Science 284, 1822 (1999).
http://dx.doi.org/10.1126/science.284.5421.1822
11.
11. Xi-kui Hu, Yang Ming, Xue-jin Zhang, Yan-qing Lu, and Yong-yuan Zhu, Appl. Phys. Lett. 101, 151109 (2012).
http://dx.doi.org/10.1063/1.4758467
12.
12. B. A. Auld, Acoustic fields and waves in solids (Wiley and Sons, New York, 1973).
13.
13. K. L. Vodopyanov, J. Opt. Soc. Am. B 16, 1579 (1999).
http://dx.doi.org/10.1364/JOSAB.16.001579
14.
14. D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, Phys. Rev. A 79, 053845 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053845
15.
15. Z. J. Wu, X. K. Hu, Z. Y. Yu, W. Hu, F. Xu, and Y. Q. Lu, Phys. Rev. B 82, 155107 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155107
16.
16. P. Xu and S. N. Zhu, AIP Advances 2, 041401 (2012).
http://dx.doi.org/10.1063/1.4773457
17.
17. I. Bialynicki-Birula, Acta Phys. Pol. A 86, 97 (1994).
18.
18. J. E. Sipe, Phys. Rev. A 52, 1875 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.1875
19.
19. B. J. Smith and M. G. Raymer, New J. Phys. 9, 414 (2007).
http://dx.doi.org/10.1088/1367-2630/9/11/414
20.
20. B. J. Smith and M. G. Raymer, Phys. Rev. A 74, 062104 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.062104
21.
21. P. L. Saldanha and C. H. Monken, New J. Phys. 13, 073015 (2011).
http://dx.doi.org/10.1088/1367-2630/13/7/073015
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802887
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Dielectric permittivity curve of SiC, the blue solid line is the real part, while the red dashed line is the imaginary part; (b) Dispersion curve of SiC, the blue solid lines are those of bulk polaritons, while the red solid line is that of SPhP mode. The oblique dashed line is the light line.

Image of FIG. 2.

Click to view

FIG. 2.

Propagation length of LRSPhP modes corresponding to different thickness of the material strip.

Image of FIG. 3.

Click to view

FIG. 3.

Illustration of the generation of entangled LRSPhP modes.

Image of FIG. 4.

Click to view

FIG. 4.

Normalized profile of (r,r). Both z and z are set at 100 μm.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Coupling efficiency from photon to LRSPhP. The incident angle is 6°, and the grating period is 13 μm. The wavelength for effective coupling presents at 11.9 μm. The coupling efficiencies stay between 0.6 and 0.8. (b) Generation probability of three types of entangled states. The blue solid line corresponds to the entangled LRSPhP state. The hybrid entangled state of LRSPhP with photon is represented by the green dashed line, while the red dotted line is for the entangled photon state.

Image of FIG. 6.

Click to view

FIG. 6.

Values of function Γ for the case of perfect phase matching.

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802887
2013-04-18
2014-04-16

Abstract

Surface phonon polariton (SPhP) is a special propagation mode in condensed matter systems. We present an investigation on the entanglement of SPhP modes. The entangled SPhP pairs are generated through launching entangled photons onto the grating coupling systems. The interaction Hamiltonian for the coupling process between entangled photons and entangled LRSPhPs is derived. State vector of the entangled LRSPhPs is obtained through the perturbation theory. The origin of LRSPhP entanglement is revealed. Wave mechanics approach is taken to describe the coupling process as an alteration. To present the nonlocality, the second-order correlation function is studied.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802887.html;jsessionid=7hukd7ffgo7hd.x-aip-live-01?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802887&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum entanglement based on surface phonon polaritons in condensed matter systems
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802887
10.1063/1.4802887
SEARCH_EXPAND_ITEM