1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Phase behaviors of agarose gel
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/4/10.1063/1.4802968
1.
1. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca and London, 1953).
2.
2. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca and London, 1979).
3.
3. M. Tokita and T. Tanaka, J. Chem. Phys. 95, 4613 (1991).
http://dx.doi.org/10.1063/1.461729
4.
4. M. Tokita and T. Tanaka, Science 253, 1121 (1991).
http://dx.doi.org/10.1126/science.253.5024.1121
5.
5. Y. Doi and M. Tokita, Langmuir 21, 5285 (2005).
http://dx.doi.org/10.1021/la050453n
6.
6. Y. Doi and M. Tokita, Langmuir 21, 9420 (2005).
http://dx.doi.org/10.1021/la0512502
7.
7. E. G. Richards and C. J. Temple, Nature (Phys. Sci.) 230, 92 (1971).
8.
8. D. A. Rees, Pure and Appl. Chem. 53, 1 (1981).
http://dx.doi.org/10.1351/pac198153010001
9.
9. Physical Chemistry and Industrial Application of Gellan Gum (Eds., K. Nishinari) Progr. Colloid Polymer Sci., 114 (1999).
10.
10. Hydrocolloids, Part 1 and 2 (Eds., K. Nishinari) (Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, and Tokyo, 2000).
11.
11. Food Polysaccharides and their Applications (Eds., A. M. Stephen, G. O. Phillips, and P. A. Williams) (CRC Press, 2006).
12.
12. G. T. Fake and W. Prins, Macromolecules 7, 527 (1974).
http://dx.doi.org/10.1021/ma60040a022
13.
13. M. Tokita and K. Hikich, Phys. Rev. A 35, 4329 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.4329
14.
14. M. Watase, K. Nishinari, P. A. Williams, and G. O. Phillips, J. Agric. Food Chem. 38, 1181 (1990).
http://dx.doi.org/10.1021/jf00095a005
15.
15. K. Nishinari, M. Watase, K. Kohyama, N. Nishinari, D. Oakenfull, S. Koide, K. Ogino, P. A. Williams, and G. O. Phillips, Polymer J. 24, 871 (1992).
http://dx.doi.org/10.1295/polymj.24.871
16.
16. P. L. San Biagio, D. Bulone, A. Emanuele, M. B. Palma-Vittorelli, and M. U. Palma, Food Hydrocolloids 10, 91 (1996).
http://dx.doi.org/10.1016/S0268-005X(96)80059-2
17.
17. T. Fujii, T. Yano, H. Kumagai, O. Miyawaki, Food Hydrocolloids 14, 359 (2000).
http://dx.doi.org/10.1016/S0268-005X(00)00012-6
18.
18. M. Matsuo, T. Tanaka, and L. Ma, Polymer 43, 5299 (2002).
http://dx.doi.org/10.1016/S0032-3861(02)00290-2
19.
19. D. Bulone, D. Giacomazza, V. Martorana, J. Newman, and P. L. San Biagio, Phys. Rev. E 69, 041401 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.041401
20.
20. M. Roy and S. Chakraborty, Polymer 46, 3535 (2005).
http://dx.doi.org/10.1016/j.polymer.2005.02.089
21.
21. A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. Lett. 42, 518 (1979);
http://dx.doi.org/10.1103/PhysRevLett.42.518
21.A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. B 25, 6805 (1982). References are cited therein.
http://dx.doi.org/10.1103/PhysRevB.25.6805
22.
22. T. Tanaka, G. Swislow, and I. Ohmine, Phys. Rev. Lett. 42, 1556 (1979).
http://dx.doi.org/10.1103/PhysRevLett.42.1556
23.
23. N. Kuwahara, M. Nakata, and M. Kaneko, Polymer 14, 415 (1973).
http://dx.doi.org/10.1016/0032-3861(73)90005-0
24.
24. C. Liu, N. Asherie, A. Lomakin, J. Pande, O. Ogun, and G. B. Benedek, Proc. Natl. Acad. Sci. USA 93, 377 (1996).
http://dx.doi.org/10.1073/pnas.93.1.377
25.
25. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
http://dx.doi.org/10.1063/1.1744102
26.
26. J. W. Cahn, J. Chem. Phys. 42, 93 (1965).
http://dx.doi.org/10.1063/1.1695731
27.
27. T. Dobashi, T. Narita, K. Makino, T. Mogi, H. Ohshima, M. Takenaka, and B. Chu, Langmuir 14, 745 (1998).
http://dx.doi.org/10.1021/la9707641
28.
28. P. G. de Gennes, J. Chem. Phys. 72, 4756 (1980).
http://dx.doi.org/10.1063/1.439809
29.
29. T. Hashimoto, J. Kumaki, and H. Kawai, Macromolecules 16, 641 (1983).
http://dx.doi.org/10.1021/ma00238a030
30.
30. T. Izumitani and T. Hashimoto, J. Chem. Phys. 83, 3694 (1985).
http://dx.doi.org/10.1063/1.449124
31.
31. W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).
http://dx.doi.org/10.1063/1.1723803
32.
32. P. G. de Gennes, J. Phys. (Paris) Lett. 37, L1 (1976).
http://dx.doi.org/10.1051/jphyslet:019760037010100
33.
33. The references of the experimental studies on the critical elasticity of the gel are listed in the references 13,17.
34.
34. In references 13,17, the exponents are determined in the dilute regions of agarose solutions, c.a., below 0.25 g/100 ml. The spinodal decomposition of the solution does not influence the value of these exponents because the spinodal temperature of the system in these concentration region becomes much lower than the room temperature as shown in Figure 1.
35.
35. Phase Transitions, Cargese 1980, Nato Advanced Study Institute Series, Series B: Physics, Vol 72 (Eds., M. Levy, J. C. Le Guillou, and J. Zinn-Justin) (Plenum Press, 1982).
36.
36. R. Houwink, Elasticity, Plasticity and Structure of Matter (Cambridge University Press, 1937), p. 70. See also the 3rd edition of the book of the same title that is edited by R. Houwink and H. K. de Decker, (Cambridge University Press 1971), p. 186.
37.
37. T. Nakagawa, Rheology (in Japanese) (Iwanami, 1978).
38.
38.In above references 36,37, the elastic modulus of the porous material that consists of the aggregated structure of the cells of thin wall is calculated as a function of the ratio L0/L where L0 is the typical size of the cell and L the thickness of the wall. The elastic modulus of the whole system, γ, is written as follows. Here, γ0 is the elastic modulus of the bulk material that consists the wall. If the typical size of the system is L0/L = 10, the elastic modulus of the whole system becomes 2.5 × 10−2 of the elastic modulus of the wall material itself. Of course, the elastic modulus of the whole system is also influenced strongly whether the structure of the cell is open or close.
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802968
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802968
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802968
2013-04-19
2014-09-01

Abstract

We present evidence for the existence of phase separation in the gel state of agarose having the mixture of water and methanol as the gel solvent. Firstly, the sol-gel transition line and the cloud point line are determined independently as a function of the concentration of agarose as well as the concentration of methanol in the mixed solvent by the quasi-equilibrium cooling of the solutions. Then the spinodal line is determined by quenching the solutions below the sol-gel transition line. We find that the spinodal line appears below the cloud point line and both lines are entirely buried below the sol-gel transition line in the aqueous agarose system. The concentration fluctuations are, therefore, frozen into the polymer network of agarose gel that promotes the opacity of the resultant gel. The structure of agarose gel is observed by the confocal laser scanning microscope (CLSM) imaging technique that reveals that the density fluctuations are grown up to micrometer scale in space. The phase separation boundary is found to shift to the higher temperature region than the sol-gel transition line when the concentration of methanol in the mixed solvent is increased. The results indicate that the position of the phase separation boundary in relative to the sol-gel transition line varies with the quality of solvent. These results are in agreement with the theory of the sol-gel transition in which both the divergence of the connectivity and the thermodynamic instability are taken into account.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802968.html;jsessionid=pve8pc230qm3.x-aip-live-03?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802968&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Phase behaviors of agarose gel
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802968
10.1063/1.4802968
SEARCH_EXPAND_ITEM