Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802969
1.
1. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, 1992);
1.I. Antoniadis, K. Benakli, A. Delgado, and M. Quiros, Adv. Stud. Theor. Phys. 2, 645 (2008);
2.
2. E. Witten, Nucl. Phys. B 202, 253 (1982);
http://dx.doi.org/10.1016/0550-3213(82)90071-2
2.S. Klishevich and M. Plyushchay, Nucl. Phys. B 606, 583 (2001);
http://dx.doi.org/10.1016/S0550-3213(01)00197-3
2.A. M. Grundland, A. J. Harton and L. Snobl, J. Phys. A: Math. Gen. 42, 335203 (2009).
http://dx.doi.org/10.1088/1751-8113/42/33/335203
3.
3. B. A. Kupershmidt, Phys. Lett. A 102, 213 (1984);
http://dx.doi.org/10.1016/0375-9601(84)90693-5
3.P. Mathieu, J. Math. Phys. 29, 2499 (1988).
http://dx.doi.org/10.1063/1.528090
4.
4. P. D. Vecchia and S. Ferrara, Nucl. Phys. B 130, 93 (1977);
http://dx.doi.org/10.1016/0550-3213(77)90394-7
4.J. Hruby, Nucl. Phys. B 131, 275 (1977);
http://dx.doi.org/10.1016/0550-3213(77)90373-X
4.S. Ferrara, L. Girardello, and S. Sciuto, Phys. Lett. B 76, 303 (1978);
http://dx.doi.org/10.1016/0370-2693(78)90793-1
4.M. Chaichain and P. P. Kulsih, Phys. Lett. B 78, 413 (1978).
http://dx.doi.org/10.1016/0370-2693(78)90473-2
5.
5. Y. I. Martin and A. O. Radul, Commun. Math. Phys. 98, 65 (1985).
http://dx.doi.org/10.1007/BF01211044
6.
6. G. H. M. Roelofs and P. H. M. Kersten, J. Math. Phys. 33, 2185 (1992);
http://dx.doi.org/10.1063/1.529640
6.J. C. Brunelli and A. Das, J. Math. Phys. 36, 268 (1995).
http://dx.doi.org/10.1063/1.531370
7.
7. M. Chaichan and P. P. Kulish, Phys. Letts B 78, 413 (1978);
http://dx.doi.org/10.1016/0370-2693(78)90473-2
7.P. D. Vecchia and S. Ferrara, Nucl. Phys. B 130, 93 (1977).
http://dx.doi.org/10.1016/0550-3213(77)90394-7
8.
8. L. Hlavatý, Phys. Lett. A 137, 173 (1989).
http://dx.doi.org/10.1016/0375-9601(89)90205-3
9.
9. P. Mathieu, arXiv:math-ph/0005007.
10.
10. M. S. Plyushchay, Ann. Phys. 245, 339 (1996);
http://dx.doi.org/10.1006/aphy.1996.0012
10.F. Correa and M. S. Plyushchay, Ann. Phys. 322, 2493 (2007).
http://dx.doi.org/10.1016/j.aop.2006.12.002
11.
11. S. Andrea, A. Restuccia and A. Sotomayor, J. Math. Phys. 42, 2625 (2001).
http://dx.doi.org/10.1063/1.1368139
12.
12. X. N. Gao and S. Y. Lou, Phys. Lett. B 707, 209 (2012).
http://dx.doi.org/10.1016/j.physletb.2011.12.021
13.
13. M. Ito, J. Phys. Soc. Jpn. 49, 771 (1980).
http://dx.doi.org/10.1143/JPSJ.49.771
14.
14. X. B. Hu and Y. Li, J. Phys. A 24, 1979 (1991).
http://dx.doi.org/10.1088/0305-4470/24/9/010
15.
15. V. G. Drinfeld and V. Sokolov, J. Sov. Math. 30, 1975 (1985).
http://dx.doi.org/10.1007/BF02105860
16.
16. Q. P. Liu, Phys. Lett. A 277, 31 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00684-8
17.
17. S. Q. , X. B. Hu and Q. P. Liu, J. Phys. Soc. Jpn. 75, 064004 (2006).
http://dx.doi.org/10.1143/JPSJ.75.064004
18.
18. P. J. Olver, Application of Lie Group to Differential Equation (Springer, Berlin, 1986);
18.G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002).
19.
19. G. Bluman and J. Cole, J. Math. Mech. 18, 1025 (1969).
20.
20. S. Y. Lou and H. C. Ma, J. Phys. A: Math. Gen. 38, L129 (2005).
http://dx.doi.org/10.1088/0305-4470/38/7/L04
21.
21. B. Ren, X. J. Xu, and J. Lin, J. Math. Phys. 50, 123505 (2009).
http://dx.doi.org/10.1063/1.3268588
22.
22. B. Li, C. Wang, and Y. Chen, J. Math. Phys. 49, 103503 (2008).
http://dx.doi.org/10.1063/1.2993975
23.
23. E. G. Fan, and Y. C. Hon, arXiv:1001.1492 [nlin.SI].
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802969
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802969
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802969
2013-04-19
2016-12-06

Abstract

Based on the bosonization approach, the supersymmetric Ito (sIto) system is changed to a system of coupled bosonic equations. The approach can effectively avoid difficulties caused by intractable fermionic fields which are anticommuting. By solving the coupled bosonic equations, the traveling wave solutions of the sIto system are obtained with the mapping and deformation method. Some novel types of exact solutions for the supersymmetric system are constructed with the solutions and symmetries of the usual Ito equation. In the meanwhile, the similarity reduction solutions of the model are also studied with the Lie point symmetry theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802969.html;jsessionid=-aVh0q9axyfL9JYtTrMh_Vq8.x-aip-live-06?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802969&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802969&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802969'
Right1,Right2,Right3,