Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802970
1.
1. M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967).
http://dx.doi.org/10.1016/S0065-2792(08)60179-X
2.
2. N. S. Hush, Prog. Inorg. Chem. 8, 391 (1967).
http://dx.doi.org/10.1002/9780470166093.ch7
3.
3. S. B. Piepho, E. R. Krausz, and P. N. Schatz, J. Am. Chem. Soc. 100, 2996 (1978).
http://dx.doi.org/10.1021/ja00478a011
4.
4. D. Rehorek, J. Salvetter, A. Hantschmann, H. Hennig, Z. Stasicka, and A. Chodkowska, Inorg. Chim. Acta 37, L471 (1979).
http://dx.doi.org/10.1016/S0020-1693(00)95476-8
5.
5. H. Hennig, A. Rehorek, D. Rehorek, P. Thomas, and D. Bäzold, Inorg. Chim. Acta 77, L11 (1983).
http://dx.doi.org/10.1016/S0020-1693(00)82552-9
6.
6. B. Sieklucka, Prog. React. Kinet. 15, 175 (1989).
7.
7. D. B. Brown, Mixed Valence Compounds (NATO ASI, Dordrecht, 1980).
8.
8. K. Prassides, Mixed Valency Systems: Applications in Chemistry, Physics and Biology (NATO ASI, Dordrecht, 1991).
9.
9. M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Coord. Chem. Rev. 190−192, 1023 (1999).
http://dx.doi.org/10.1016/S0010-8545(99)00156-3
10.
10. S. Ohkoshi and K. Hashimoto, J. Photochem. Photobiol. C 2, 71 (2001).
http://dx.doi.org/10.1016/S1389-5567(01)00011-9
11.
11. C. P. Berlinguette, A. Dragulescu-Andrasi, A. Sieber, H. U. Güdel, C. Achim, and K. R. Dunbar, J. Am. Chem. Soc. 127, 6766 (2005).
http://dx.doi.org/10.1021/ja043162u
12.
12. S. Ohkoshi, N. Machida, Z. J. Zhong, and K. Hashimoto, Synth. Met. 122, 523 (2001).
http://dx.doi.org/10.1016/S0379-6779(01)00327-7
13.
13. G. Rombaut, M. Verelst, S. Golhen, L. Ouahab, C. Mathonière, and O. Kahn, Inorg. Chem. 40, 1151 (2001).
http://dx.doi.org/10.1021/ic0008722
14.
14. S. Ohkoshi, H. Tokoro, T. Hozumi, Y. Zhang, K. Hashimoto, C. Mathonière, I. Bord, G. Rombaut, M. Verelst, C. C. D. Moulin, and F. Villain, J. Am. Chem. Soc. 128, 270 (2006).
http://dx.doi.org/10.1021/ja0559092
15.
15. T. Hozumi, K. Hashimoto, and S. Ohkoshi, J. Am. Chem. Soc. 127, 3864 (2005).
http://dx.doi.org/10.1021/ja044107o
16.
16. H. Tokoro, K. Nakagawa, K. Nakabayashi, T. Kashiwagi, K. Hashimoto, and S. Ohkoshi, Chem. Lett. 38, 338 (2009).
http://dx.doi.org/10.1246/cl.2009.338
17.
17. J. M. Herrera, V. Marvaud, M. Verdaguer, J. Marrot, M. Kalisz, and C. Mathonière, Angew. Chem. Int. Ed. 43, 5468 (2004).
http://dx.doi.org/10.1002/anie.200460387
18.
18. K. Nakagawa, H. Tokoro, and S. Ohkoshi, Inorg. Chem. 47, 10810 (2008).
http://dx.doi.org/10.1021/ic8016563
19.
19. A. Hauser, P. Gütlich, and H. Spiering, Inorg. Chem. 25, 4245 (1986).
http://dx.doi.org/10.1021/ic00243a036
20.
20. S. Decurtins, P. Gütlich, K. M. Hasselbach, A. Hauser, and H. Spiering, Inorg. Chem. 24, 2174 (1985).
http://dx.doi.org/10.1021/ic00208a013
21.
21. K. Boukheddaden, I. Shteto, B. Hôo, and F. Varret, Phys. Rev. B 62, 14796 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.14796
22.
22. M. Avrami, J. Chem. Phys. 9, 177 (1941).
http://dx.doi.org/10.1063/1.1750872
23.
23. J. Larionova, R. Clérac, B. Donnadieu, S. Willemin, and C. Guérin, Cryst. Growth Des. 3, 267 (2003).
http://dx.doi.org/10.1021/cg020048j
24.
24. J.-F. Létard, P. Guionneau, L. Rabardel, J. A. K. Howard, A. E. Goeta, D. Chasseau, and O. Kahn, Inorg. Chem. 37, 4432 (1998).
http://dx.doi.org/10.1021/ic980107b
25.
25. M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967).
http://dx.doi.org/10.1016/S0065-2792(08)60179-X
26.
26. S. Ohkoshi and H. Tokoro, Accounts Chem. Res. 45, 1749 (2012).
http://dx.doi.org/10.1021/ar300068k
27.
27. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro, Nat. Chem. 3, 564 (2011).
http://dx.doi.org/10.1038/nchem.1067
28.
28. H. Tokoro, S. Ohkoshi, and K. Hashimoto, Appl. Phys. Lett. 82, 1245 (2003).
http://dx.doi.org/10.1063/1.1556170
29.
29. H. Tokoro, T. Matsuda, T. Nuida, Y. Moritomo, K. Ohoyama, E. D. L. Dangui, K. Boukheddaden, and S. Ohkoshi, Chem. Mater. 20, 423 (2008).
http://dx.doi.org/10.1021/cm701873s
30.
30. B. Nowicka, T. Korzeniak, O. Stefańczyk, D. Pinkowicz, S. Chorąży, R. Podgajny, and B. Sieklucka, Coord. Chem. Rev. 256, 1946 (2012).
http://dx.doi.org/10.1016/j.ccr.2012.04.008
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802970
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802970
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802970
2013-04-22
2016-12-06

Abstract

We observed a photo-switching effect in [Cu (1,4,8,11-tetraazacyclodecane)] [Mo (CN)]·10HO by irradiation with 410-nm light around room temperature using infrared spectroscopy. This photo-switching is caused by the photo-induced charge transfer from Mo to Cu . The photo-induced phase thermally relaxed to the initial phase with a half-life time of 2.7 × 10, 6.9 × 10, and 1.7 × 10 s at 293, 283, and 273 K, respectively. The relaxation process was analyzed using Hauser's equation, = exp[−( + ) / ], where is the rate constant of relaxation, is the frequency factor, is the activation energy, is the additional activation energy due to the cooperativity, and is the fraction of the photo-induced phase. , , and were evaluated as 1.28 × 10 ± 2.6 s, 4002 ± 188 cm, and 546 ± 318 cm, respectively. The value of is much larger than that of the relaxation process for the typical light-induced spin crossover effect ( ≈ 1000 cm). Room-temperature photo-switching is an important issue in the field of optical functional materials. The present system is useful for the demonstration of high-temperature photo-switching material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802970.html;jsessionid=OP7kav70Yk_IaekcDQlA6VUY.x-aip-live-02?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802970&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802970&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802970'
Right1,Right2,Right3,