Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802973
1.
1. O. W. Richardson, Philos. Mag. 23, 594 (1912).
2.
2. S. Dushman, Phys. Rev. 21, 623 (1923).
http://dx.doi.org/10.1103/PhysRev.21.623
3.
3. R. H. Fowler and L. Nordheim, Proc. R. Soc. Lond. A 119, 173 (1928).
http://dx.doi.org/10.1098/rspa.1928.0091
4.
4. A. Einstein, Ann. Phys.-Berlin 322, 132 (1905).
http://dx.doi.org/10.1002/andp.19053220607
5.
5. R. H. Fowler, Phys. Rev. 38, 45 (1931).
http://dx.doi.org/10.1103/PhysRev.38.45
6.
6. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
7.
7. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
http://dx.doi.org/10.1038/363603a0
8.
8. N. de Jonge and J.-M. Bonard, Phil. Trans. R. Soc. Lond. A 362, 2239 (2004).
http://dx.doi.org/10.1098/rsta.2004.1438
9.
9. Z.-S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009).
http://dx.doi.org/10.1002/adma.200802560
10.
10. Z. M. Xiao, J. C. She, S. Z. Deng, Z. K. Tang, Z. B. Li, J. M. Lu, and N. S. Xu, ACS Nano 4, 6332 (2010).
http://dx.doi.org/10.1021/nn101719r
11.
11. M. S. Wang, J. Y. Wang, and L.-M. Peng, Appl. Phys. Lett. 88, 243108 (2006).
http://dx.doi.org/10.1063/1.2208941
12.
12. D. C. Cox, R. D. Forrest, P. R. Smith, and S. R. P. Silva, Appl. Phys. Lett. 85, 2065 (2004).
http://dx.doi.org/10.1063/1.1790597
13.
13. P. Liu, Y. Wei, K. L. Jiang, Q. Sun, X. B. Zhang, S. S. Fan, S. F. Zhang, C. G. Ning, and J. K. Deng, Phys. Rev. B 73, 235412 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235412
14.
14. J. A. Becker, Rev. Mod. Phys. 7, 95 (1935).
http://dx.doi.org/10.1103/RevModPhys.7.95
15.
15. W. L. Wang, X. Z. Qin, N. S. Xu, and Z. B. Li, J. Appl. Phys. 109, 044304 (2011).
http://dx.doi.org/10.1063/1.3549705
16.
16. X. L. Wei, D. Golberg, Q. Chen, Y. Bando, and L. M. Peng, Nano Lett. 11, 734 (2011).
http://dx.doi.org/10.1021/nl103861p
17.
17. X. L. Wei, D. Golberg, Q. Chen, Y. Bando, and L. M. Peng, Phys. Rev. B 84, 195462 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195462
18.
18. X. L. Wei, Y. Bando, and D. Golberg, ACS Nano 6, 705 (2012).
http://dx.doi.org/10.1021/nn204172w
19.
19. W. W. Dolan and W. P. Dyke, Phys. Rev. 95, 327 (1954).
http://dx.doi.org/10.1103/PhysRev.95.327
20.
20. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1464
21.
21. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
22.
22. Electrons were assumed to transit to an energy band immediately when their energy reach the cut-off energy of the band in calculating emission current from carbon nanotube surfaces in Ref. 16,17.
23.
23. M. Henzler, Surf. Sci. 25, 650 (1971).
http://dx.doi.org/10.1016/0039-6028(71)90153-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802973
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802973
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802973
2013-04-19
2016-12-11

Abstract

Electron emission from a two-dimensional (2D) crystal with atomic thickness is theoretically studied with all the features associated with the low dimensionality and the atomic thickness being well considered. It is shown that, the atomic thickness results in quantum confinement of electrons in the crystal along thickness direction, and consequently two different ways of electron emission from it without and with quantum confinement of electrons normal to emission boundary: edge emission and surface emission. While electron emission from the edge of a 2D crystal can be described by the existing model, electron emission from the surface goes beyond its reach. Here, to describe the latter electron emission, a model based on the energy band theory with the quantum confinement along thickness direction being considered is proposed. It is shown that, the proposed model is a general one capable of describing not only electron emission with quantum confinement normal to an emission boundary but also electron emission without the regarded quantum confinement. The model is expected to advance the understanding and description of electron emission from a solid.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802973.html;jsessionid=OqnSm76ySYlwyTndIE8AN04t.x-aip-live-03?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802973&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802973'
Right1,Right2,Right3,