Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. W. Richardson, Philos. Mag. 23, 594 (1912).
2. S. Dushman, Phys. Rev. 21, 623 (1923).
3. R. H. Fowler and L. Nordheim, Proc. R. Soc. Lond. A 119, 173 (1928).
4. A. Einstein, Ann. Phys.-Berlin 322, 132 (1905).
5. R. H. Fowler, Phys. Rev. 38, 45 (1931).
6. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
7. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
8. N. de Jonge and J.-M. Bonard, Phil. Trans. R. Soc. Lond. A 362, 2239 (2004).
9. Z.-S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009).
10. Z. M. Xiao, J. C. She, S. Z. Deng, Z. K. Tang, Z. B. Li, J. M. Lu, and N. S. Xu, ACS Nano 4, 6332 (2010).
11. M. S. Wang, J. Y. Wang, and L.-M. Peng, Appl. Phys. Lett. 88, 243108 (2006).
12. D. C. Cox, R. D. Forrest, P. R. Smith, and S. R. P. Silva, Appl. Phys. Lett. 85, 2065 (2004).
13. P. Liu, Y. Wei, K. L. Jiang, Q. Sun, X. B. Zhang, S. S. Fan, S. F. Zhang, C. G. Ning, and J. K. Deng, Phys. Rev. B 73, 235412 (2006).
14. J. A. Becker, Rev. Mod. Phys. 7, 95 (1935).
15. W. L. Wang, X. Z. Qin, N. S. Xu, and Z. B. Li, J. Appl. Phys. 109, 044304 (2011).
16. X. L. Wei, D. Golberg, Q. Chen, Y. Bando, and L. M. Peng, Nano Lett. 11, 734 (2011).
17. X. L. Wei, D. Golberg, Q. Chen, Y. Bando, and L. M. Peng, Phys. Rev. B 84, 195462 (2011).
18. X. L. Wei, Y. Bando, and D. Golberg, ACS Nano 6, 705 (2012).
19. W. W. Dolan and W. P. Dyke, Phys. Rev. 95, 327 (1954).
20. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).
21. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
22. Electrons were assumed to transit to an energy band immediately when their energy reach the cut-off energy of the band in calculating emission current from carbon nanotube surfaces in Ref. 16,17.
23. M. Henzler, Surf. Sci. 25, 650 (1971).

Data & Media loading...


Article metrics loading...



Electron emission from a two-dimensional (2D) crystal with atomic thickness is theoretically studied with all the features associated with the low dimensionality and the atomic thickness being well considered. It is shown that, the atomic thickness results in quantum confinement of electrons in the crystal along thickness direction, and consequently two different ways of electron emission from it without and with quantum confinement of electrons normal to emission boundary: edge emission and surface emission. While electron emission from the edge of a 2D crystal can be described by the existing model, electron emission from the surface goes beyond its reach. Here, to describe the latter electron emission, a model based on the energy band theory with the quantum confinement along thickness direction being considered is proposed. It is shown that, the proposed model is a general one capable of describing not only electron emission with quantum confinement normal to an emission boundary but also electron emission without the regarded quantum confinement. The model is expected to advance the understanding and description of electron emission from a solid.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd