1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Spectroscopic analysis of phase constitution of high quality VO2 thin film prepared by facile sol-gel method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/4/10.1063/1.4802981
1.
1. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.237401
2.
2. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
3.
3. T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films 436, 269272 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00602-3
4.
4. C. Piccirillo, R. Binions, and I. P. Parkin, Eur. J. Inorg. Chem. 25, 4050 (2007).
http://dx.doi.org/10.1002/ejic.200700284
5.
5. X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, Sci. Rep. 2, 466 (2012).
http://dx.doi.org/10.1038/srep00466
6.
6. Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).
http://dx.doi.org/10.1063/1.1446215
7.
7. F. C. Case, J. Vac. Sci. Technol. A 2, 1509 (1984).
http://dx.doi.org/10.1116/1.572462
8.
8. J. M. Tomczak and S. Biermann, Phys. Status Solidi B 246, 1996 (2009).
http://dx.doi.org/10.1002/pssb.200945231
9.
9. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and D. Nikanpour, J. Vac. Sci. Technol. A 22, 859 (2004).
http://dx.doi.org/10.1116/1.1722506
10.
10. G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000).
http://dx.doi.org/10.1088/0953-8984/12/41/310
11.
11. Y. H. Han, K. T. Kim, H. J. Shin, S. Moon, and I. H. Choi, Appl. Phys. Lett. 86, 254101 (2005).
http://dx.doi.org/10.1063/1.1953872
12.
12. Y. W. Lee, B.-J. Kim, J.-W. Lim, S. J. Yun, S. Choi, B.-G. Chae, G. Kim, and H.-T. Kim, Appl. Phys. Lett. 92, 162903 (2008).
http://dx.doi.org/10.1063/1.2911745
13.
13. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009).
http://dx.doi.org/10.1063/1.3187531
14.
14. E. Strelcov, Y. Lilach, and A. Kolmakov, Nano Lett. 9, 2322 (2009).
http://dx.doi.org/10.1021/nl900676n
15.
15. B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, Appl. Phys. Lett. 90, 023515 (2007).
http://dx.doi.org/10.1063/1.2431456
16.
16. M. B. Sahana, M. S. Dharmaprakash, and S. A. Shivashankar, J. Mater. Chem. 12, 333 (2002).
http://dx.doi.org/10.1039/b106563g
17.
17. B. G. Chae, H. T. Kim, S. J. Yun, B. J. Kim, Y. W. Lee, D. H. Youn, and K. Y. Kang, Electrochem. Solid-State Lett. 9, C12 (2006)
http://dx.doi.org/10.1149/1.2135430
18.
18. Y. D. Ji, T. S. Pan, Z. Bi, W. Z. Liang, Y. Zhang, H. Z. Zeng, Q. Y. Wen, H. W. Zhang, C. L. Chen, Q. X. Jia, and Y. Lin, Appl. Phys. Lett. 101, 071902 (2012).
http://dx.doi.org/10.1063/1.4745843
19.
19. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys. 45, 2201 (1974).
http://dx.doi.org/10.1063/1.1663568
20.
20. L. L. Fan, Y. F. Wu, C. Si, C. W. Zou, Z. M. Qi, L. B. Li, G. Q. Pan, and Z. Y. Wu, Thin Solid Films 520, 6124 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.05.086
21.
21. D. H. Kim and H. S. Kwok, Appl. Phys. Lett. 65, 3188 (1994).
http://dx.doi.org/10.1063/1.112476
22.
22. J. Nag and R. F. Haglund Jr., J. Phys.: Condens. Matter 20, 264016 (2008).
http://dx.doi.org/10.1088/0953-8984/20/26/264016
23.
23. K. Okimura, J. Sakai, and S. Ramanathan, J. Appl. Phys. 107, 063503 (2010).
http://dx.doi.org/10.1063/1.3327422
24.
24. S. Zhang, J. Y. Chou, and L. J. Lauhon, Nano Lett. 9, 45274532 (2009).
http://dx.doi.org/10.1021/nl9028973
25.
25. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, Phys. Rev. B 85, 020101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.020101
26.
26. J. P. Pouget, H. Launois, J. P. Dhaenens, P. Merenda, and T. M. Rice, Phys. Rev. Lett. 35, 873 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.873
27.
27. J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, and M. E. Welland, Nano Lett. 9, 3392 (2009).
http://dx.doi.org/10.1021/nl900841k
28.
28. M. Marezio, B. McWhan, P. D. Dernier, and J. P. Remeika, Phys. Rev. B 5, 2541 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.2541
29.
29. G. Andersson, Acta Chem. Scand. 10, 623 (1956).
http://dx.doi.org/10.3891/acta.chem.scand.10-0623
30.
30. J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, Nano Lett. 10, 2667 (2010).
http://dx.doi.org/10.1021/nl101457k
31.
31. H.-T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, Phys. Rev. Lett. 97, 266404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266404
32.
32. N. L. Jestel and K. A. Bakeev, Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed. (Wiley, 2005), p 200.
33.
33. J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.621
34.
34. H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, J. Sol-Gel Sci. Techn. 19, 205 (2000).
http://dx.doi.org/10.1023/A:1008780120351
35.
35. J. F. Denatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
http://dx.doi.org/10.1063/1.343605
36.
36. J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).
http://dx.doi.org/10.1063/1.2384798
37.
37. J. M. Wu and L. B. Liou, J. Mater. Chem. 21, 5499 (2011).
http://dx.doi.org/10.1039/c0jm03203d
38.
38. C. Chen, R. Wang, L. Shang, and C. Guo, Appl. Phys. Lett. 93, 171101 (2008).
http://dx.doi.org/10.1063/1.3009569
39.
39. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim, New J. Phys. 6, 52 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/052
40.
40. J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, Phys. Rev. B 30, 5596 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.5596
41.
41. R. G. Shulman, Y. Yafet, P. Eisenberger, and W. E. Blumberg, Proc. Natl. Acad. Sci. USA 73, 1384 (1976).
http://dx.doi.org/10.1073/pnas.73.5.1384
42.
42. L. Whittaker, C. J. Patridge, and S. Banerjee, J. Phys. Chem. Lett. 2, 745 (2011).
http://dx.doi.org/10.1021/jz101640n
43.
43. C. Grygiel, A. Pautrat, W. C. Sheets, W. Prellier, B. Mercey, and L. Mechin, J. Phys.: Condens. Matter 20, 472205 (2008).
http://dx.doi.org/10.1088/0953-8984/20/47/472205
44.
44. Y. Cui and S. Ramanathan, J. Vac. Sci. Technol. A 29, 041502 (2011).
http://dx.doi.org/10.1116/1.3584817
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802981
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic depictions of the crystal structures of the low-temperature monoclinic M1, intermediate M2, and high-temperature tetragonal rutile R phases, with the equivalent direction of a = b = c.

Image of FIG. 2.

Click to view

FIG. 2.

SEM images of the sol-gel derived films formed on (a,b) AlO (0001), and (c,d) . The films were annealed at 530 °C for 90 min in vacuum atmosphere.

Image of FIG. 3.

Click to view

FIG. 3.

(a) XRD patterns of the sol-gel derived films formed on AlO (0001) and substrates by a sol-gel method. (b) Room-temperature Raman spectra of the films, along with the AlO (0001) and for references. Arrows mark the phonon peaks ω, ω, and ω.

Image of FIG. 4.

Click to view

FIG. 4.

V -edge XANES spectra for the sol-gel derived VO films, VO (M1) film (PLD method) and VO (M1) powder (hydrothermal method). The absorption edge shifts to higher energy with increased oxidation state due to the increased binding energy of core electrons.

Image of FIG. 5.

Click to view

FIG. 5.

(a) V -edge EXAFS oscillation function (k). (b) Fourier transforms (FTs) of (k) and the corresponding fitting results for the sol-gel derived films, along with VO (M1) powder and the theoretical results of monoclinic VO (M1) and VO (M2) for the comparison. Fitting results are plotted as open circles.

Image of FIG. 6.

Click to view

FIG. 6.

The temperature dependence of the electrical resistance for the sol-gel derived VO (M1) films on (a) AlO (0001) and (b) substrates.

Tables

Generic image for table

Click to view

Table I.

The structural parameters (distance , and Debye-Waller factor ) for the different V–O and V–V pairs for VO samples. The coordination number for each shell was fixed in the fits. The extracted spectrum were weighted by k and simulated (least-squares fit) in R-space. Fitting region: 0.8 ≤ R (Å) ≤ 3.7, 3.1 ≤ k(Å) ≤ 12.0.

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802981
2013-04-22
2014-04-24

Abstract

VO thin films with large-area were prepared on AlO substrates by a simple sol-gel method. After an annealing treatment under low vacuum condition, all the VO films showed a preferred growth direction and exhibited excellent semiconductor-metal transition (SMT) characteristics. The structure and electrical properties of the obtained VO films were investigated systematically. Raman spectra, X-ray diffraction and X-ray absorption spectra measurements pointed out that the VO film on substrate showed a M1 phase instead of M2 phase as reported in previous studies. Based on the experiment results, it was suggested that the strained structure of oriented VO films could be a mechanism for the formation of the intermediate M2 phase, whereas it is difficult to access the pure M2 phase of undoped VO films. VO film on substrate showed a lower SMT temperature compared to VO film on AlO (0001), which can be mostly attributed to the differences of both lattice mismatch and thermal stress. The present results confirm and make clear the relevance of the substrate orientation in the growth of VO film and their different contributions to the SMT characteristics in vanadate systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802981.html;jsessionid=1butcbmusen35.x-aip-live-01?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802981&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spectroscopic analysis of phase constitution of high quality VO2 thin film prepared by facile sol-gel method
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802981
10.1063/1.4802981
SEARCH_EXPAND_ITEM