Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
2. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
3. T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films 436, 269272 (2003).
4. C. Piccirillo, R. Binions, and I. P. Parkin, Eur. J. Inorg. Chem. 25, 4050 (2007).
5. X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, Sci. Rep. 2, 466 (2012).
6. Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).
7. F. C. Case, J. Vac. Sci. Technol. A 2, 1509 (1984).
8. J. M. Tomczak and S. Biermann, Phys. Status Solidi B 246, 1996 (2009).
9. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and D. Nikanpour, J. Vac. Sci. Technol. A 22, 859 (2004).
10. G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000).
11. Y. H. Han, K. T. Kim, H. J. Shin, S. Moon, and I. H. Choi, Appl. Phys. Lett. 86, 254101 (2005).
12. Y. W. Lee, B.-J. Kim, J.-W. Lim, S. J. Yun, S. Choi, B.-G. Chae, G. Kim, and H.-T. Kim, Appl. Phys. Lett. 92, 162903 (2008).
13. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009).
14. E. Strelcov, Y. Lilach, and A. Kolmakov, Nano Lett. 9, 2322 (2009).
15. B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, Appl. Phys. Lett. 90, 023515 (2007).
16. M. B. Sahana, M. S. Dharmaprakash, and S. A. Shivashankar, J. Mater. Chem. 12, 333 (2002).
17. B. G. Chae, H. T. Kim, S. J. Yun, B. J. Kim, Y. W. Lee, D. H. Youn, and K. Y. Kang, Electrochem. Solid-State Lett. 9, C12 (2006)
18. Y. D. Ji, T. S. Pan, Z. Bi, W. Z. Liang, Y. Zhang, H. Z. Zeng, Q. Y. Wen, H. W. Zhang, C. L. Chen, Q. X. Jia, and Y. Lin, Appl. Phys. Lett. 101, 071902 (2012).
19. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys. 45, 2201 (1974).
20. L. L. Fan, Y. F. Wu, C. Si, C. W. Zou, Z. M. Qi, L. B. Li, G. Q. Pan, and Z. Y. Wu, Thin Solid Films 520, 6124 (2012).
21. D. H. Kim and H. S. Kwok, Appl. Phys. Lett. 65, 3188 (1994).
22. J. Nag and R. F. Haglund Jr., J. Phys.: Condens. Matter 20, 264016 (2008).
23. K. Okimura, J. Sakai, and S. Ramanathan, J. Appl. Phys. 107, 063503 (2010).
24. S. Zhang, J. Y. Chou, and L. J. Lauhon, Nano Lett. 9, 45274532 (2009).
25. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, Phys. Rev. B 85, 020101 (2012).
26. J. P. Pouget, H. Launois, J. P. Dhaenens, P. Merenda, and T. M. Rice, Phys. Rev. Lett. 35, 873 (1975).
27. J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, and M. E. Welland, Nano Lett. 9, 3392 (2009).
28. M. Marezio, B. McWhan, P. D. Dernier, and J. P. Remeika, Phys. Rev. B 5, 2541 (1972).
29. G. Andersson, Acta Chem. Scand. 10, 623 (1956).
30. J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, Nano Lett. 10, 2667 (2010).
31. H.-T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, Phys. Rev. Lett. 97, 266404 (2006).
32. N. L. Jestel and K. A. Bakeev, Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed. (Wiley, 2005), p 200.
33. J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
34. H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, J. Sol-Gel Sci. Techn. 19, 205 (2000).
35. J. F. Denatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
36. J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).
37. J. M. Wu and L. B. Liou, J. Mater. Chem. 21, 5499 (2011).
38. C. Chen, R. Wang, L. Shang, and C. Guo, Appl. Phys. Lett. 93, 171101 (2008).
39. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim, New J. Phys. 6, 52 (2004).
40. J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, Phys. Rev. B 30, 5596 (1984).
41. R. G. Shulman, Y. Yafet, P. Eisenberger, and W. E. Blumberg, Proc. Natl. Acad. Sci. USA 73, 1384 (1976).
42. L. Whittaker, C. J. Patridge, and S. Banerjee, J. Phys. Chem. Lett. 2, 745 (2011).
43. C. Grygiel, A. Pautrat, W. C. Sheets, W. Prellier, B. Mercey, and L. Mechin, J. Phys.: Condens. Matter 20, 472205 (2008).
44. Y. Cui and S. Ramanathan, J. Vac. Sci. Technol. A 29, 041502 (2011).

Data & Media loading...


Article metrics loading...



VO thin films with large-area were prepared on AlO substrates by a simple sol-gel method. After an annealing treatment under low vacuum condition, all the VO films showed a preferred growth direction and exhibited excellent semiconductor-metal transition (SMT) characteristics. The structure and electrical properties of the obtained VO films were investigated systematically. Raman spectra, X-ray diffraction and X-ray absorption spectra measurements pointed out that the VO film on substrate showed a M1 phase instead of M2 phase as reported in previous studies. Based on the experiment results, it was suggested that the strained structure of oriented VO films could be a mechanism for the formation of the intermediate M2 phase, whereas it is difficult to access the pure M2 phase of undoped VO films. VO film on substrate showed a lower SMT temperature compared to VO film on AlO (0001), which can be mostly attributed to the differences of both lattice mismatch and thermal stress. The present results confirm and make clear the relevance of the substrate orientation in the growth of VO film and their different contributions to the SMT characteristics in vanadate systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd