Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4802981
1.
1. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.237401
2.
2. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
3.
3. T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films 436, 269272 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00602-3
4.
4. C. Piccirillo, R. Binions, and I. P. Parkin, Eur. J. Inorg. Chem. 25, 4050 (2007).
http://dx.doi.org/10.1002/ejic.200700284
5.
5. X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, Sci. Rep. 2, 466 (2012).
http://dx.doi.org/10.1038/srep00466
6.
6. Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).
http://dx.doi.org/10.1063/1.1446215
7.
7. F. C. Case, J. Vac. Sci. Technol. A 2, 1509 (1984).
http://dx.doi.org/10.1116/1.572462
8.
8. J. M. Tomczak and S. Biermann, Phys. Status Solidi B 246, 1996 (2009).
http://dx.doi.org/10.1002/pssb.200945231
9.
9. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and D. Nikanpour, J. Vac. Sci. Technol. A 22, 859 (2004).
http://dx.doi.org/10.1116/1.1722506
10.
10. G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000).
http://dx.doi.org/10.1088/0953-8984/12/41/310
11.
11. Y. H. Han, K. T. Kim, H. J. Shin, S. Moon, and I. H. Choi, Appl. Phys. Lett. 86, 254101 (2005).
http://dx.doi.org/10.1063/1.1953872
12.
12. Y. W. Lee, B.-J. Kim, J.-W. Lim, S. J. Yun, S. Choi, B.-G. Chae, G. Kim, and H.-T. Kim, Appl. Phys. Lett. 92, 162903 (2008).
http://dx.doi.org/10.1063/1.2911745
13.
13. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009).
http://dx.doi.org/10.1063/1.3187531
14.
14. E. Strelcov, Y. Lilach, and A. Kolmakov, Nano Lett. 9, 2322 (2009).
http://dx.doi.org/10.1021/nl900676n
15.
15. B.-J. Kim, Y. W. Lee, B.-G. Chae, S. J. Yun, S.-Y. Oh, H.-T. Kim, and Y.-S. Lim, Appl. Phys. Lett. 90, 023515 (2007).
http://dx.doi.org/10.1063/1.2431456
16.
16. M. B. Sahana, M. S. Dharmaprakash, and S. A. Shivashankar, J. Mater. Chem. 12, 333 (2002).
http://dx.doi.org/10.1039/b106563g
17.
17. B. G. Chae, H. T. Kim, S. J. Yun, B. J. Kim, Y. W. Lee, D. H. Youn, and K. Y. Kang, Electrochem. Solid-State Lett. 9, C12 (2006)
http://dx.doi.org/10.1149/1.2135430
18.
18. Y. D. Ji, T. S. Pan, Z. Bi, W. Z. Liang, Y. Zhang, H. Z. Zeng, Q. Y. Wen, H. W. Zhang, C. L. Chen, Q. X. Jia, and Y. Lin, Appl. Phys. Lett. 101, 071902 (2012).
http://dx.doi.org/10.1063/1.4745843
19.
19. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys. 45, 2201 (1974).
http://dx.doi.org/10.1063/1.1663568
20.
20. L. L. Fan, Y. F. Wu, C. Si, C. W. Zou, Z. M. Qi, L. B. Li, G. Q. Pan, and Z. Y. Wu, Thin Solid Films 520, 6124 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.05.086
21.
21. D. H. Kim and H. S. Kwok, Appl. Phys. Lett. 65, 3188 (1994).
http://dx.doi.org/10.1063/1.112476
22.
22. J. Nag and R. F. Haglund Jr., J. Phys.: Condens. Matter 20, 264016 (2008).
http://dx.doi.org/10.1088/0953-8984/20/26/264016
23.
23. K. Okimura, J. Sakai, and S. Ramanathan, J. Appl. Phys. 107, 063503 (2010).
http://dx.doi.org/10.1063/1.3327422
24.
24. S. Zhang, J. Y. Chou, and L. J. Lauhon, Nano Lett. 9, 45274532 (2009).
http://dx.doi.org/10.1021/nl9028973
25.
25. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan, and J. Wu, Phys. Rev. B 85, 020101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.020101
26.
26. J. P. Pouget, H. Launois, J. P. Dhaenens, P. Merenda, and T. M. Rice, Phys. Rev. Lett. 35, 873 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.873
27.
27. J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, and M. E. Welland, Nano Lett. 9, 3392 (2009).
http://dx.doi.org/10.1021/nl900841k
28.
28. M. Marezio, B. McWhan, P. D. Dernier, and J. P. Remeika, Phys. Rev. B 5, 2541 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.2541
29.
29. G. Andersson, Acta Chem. Scand. 10, 623 (1956).
http://dx.doi.org/10.3891/acta.chem.scand.10-0623
30.
30. J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, and J. Wu, Nano Lett. 10, 2667 (2010).
http://dx.doi.org/10.1021/nl101457k
31.
31. H.-T. Kim, Y. W. Lee, B.-J. Kim, B.-G. Chae, S. J. Yun, K.-Y. Kang, K.-J. Han, K.-J. Yee, and Y.-S. Lim, Phys. Rev. Lett. 97, 266404 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266404
32.
32. N. L. Jestel and K. A. Bakeev, Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed. (Wiley, 2005), p 200.
33.
33. J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.621
34.
34. H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, J. Sol-Gel Sci. Techn. 19, 205 (2000).
http://dx.doi.org/10.1023/A:1008780120351
35.
35. J. F. Denatale, P. J. Hood, and A. B. Harker, J. Appl. Phys. 66, 5844 (1989).
http://dx.doi.org/10.1063/1.343605
36.
36. J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).
http://dx.doi.org/10.1063/1.2384798
37.
37. J. M. Wu and L. B. Liou, J. Mater. Chem. 21, 5499 (2011).
http://dx.doi.org/10.1039/c0jm03203d
38.
38. C. Chen, R. Wang, L. Shang, and C. Guo, Appl. Phys. Lett. 93, 171101 (2008).
http://dx.doi.org/10.1063/1.3009569
39.
39. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang, and Y. S. Lim, New J. Phys. 6, 52 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/052
40.
40. J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, Phys. Rev. B 30, 5596 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.5596
41.
41. R. G. Shulman, Y. Yafet, P. Eisenberger, and W. E. Blumberg, Proc. Natl. Acad. Sci. USA 73, 1384 (1976).
http://dx.doi.org/10.1073/pnas.73.5.1384
42.
42. L. Whittaker, C. J. Patridge, and S. Banerjee, J. Phys. Chem. Lett. 2, 745 (2011).
http://dx.doi.org/10.1021/jz101640n
43.
43. C. Grygiel, A. Pautrat, W. C. Sheets, W. Prellier, B. Mercey, and L. Mechin, J. Phys.: Condens. Matter 20, 472205 (2008).
http://dx.doi.org/10.1088/0953-8984/20/47/472205
44.
44. Y. Cui and S. Ramanathan, J. Vac. Sci. Technol. A 29, 041502 (2011).
http://dx.doi.org/10.1116/1.3584817
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4802981
Loading
/content/aip/journal/adva/3/4/10.1063/1.4802981
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4802981
2013-04-22
2016-12-05

Abstract

VO thin films with large-area were prepared on AlO substrates by a simple sol-gel method. After an annealing treatment under low vacuum condition, all the VO films showed a preferred growth direction and exhibited excellent semiconductor-metal transition (SMT) characteristics. The structure and electrical properties of the obtained VO films were investigated systematically. Raman spectra, X-ray diffraction and X-ray absorption spectra measurements pointed out that the VO film on substrate showed a M1 phase instead of M2 phase as reported in previous studies. Based on the experiment results, it was suggested that the strained structure of oriented VO films could be a mechanism for the formation of the intermediate M2 phase, whereas it is difficult to access the pure M2 phase of undoped VO films. VO film on substrate showed a lower SMT temperature compared to VO film on AlO (0001), which can be mostly attributed to the differences of both lattice mismatch and thermal stress. The present results confirm and make clear the relevance of the substrate orientation in the growth of VO film and their different contributions to the SMT characteristics in vanadate systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4802981.html;jsessionid=huv0N1iL4atdsVKctuy7pusQ.x-aip-live-03?itemId=/content/aip/journal/adva/3/4/10.1063/1.4802981&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4802981&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4802981'
Right1,Right2,Right3,