Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4803647
1.
1. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, Nanotechnology 21, 175201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/17/175201
2.
2. Y. Zhang, L. Wang, X. Li, X. Yi, N. Zhang, J. Li, H. Zhu, and G. Wang, J. Appl. Phys. 111, 114501 (2012).
http://dx.doi.org/10.1063/1.4723813
3.
3. L. Wang, Y. Zhang, X. Li, Z. Liu, E. Guo, X. Yi, J. Wang, H. Zhu, and G. Wang, Appl. Phys. Lett. 101, 061102 (2012).
http://dx.doi.org/10.1063/1.4742892
4.
4. P. Blake, R. R. Nair, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
5.
5. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.016602
6.
6. Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Nature Commun. 3, 827 (2012).
http://dx.doi.org/10.1038/ncomms1828
7.
7. K. S. Novoselo and A. K. Geim, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
8.
8. J. M. Lee, H. Y. Jeong, and W. I. Park, J. Electron. Mater. 39, 2190 (2010).
http://dx.doi.org/10.1007/s11664-010-1340-z
9.
9. A. Kitt, J. W. Suk, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916 (2011).
http://dx.doi.org/10.1021/nn201207c
10.
10. K. S. Novoselo, M. I. Katsnelson, and A. K. Geim, Nature phys. 2, 620 (2006).
http://dx.doi.org/10.1038/nphys384
11.
11. L. Fan, Z. Li, Z. Xu, K. Wang, J. Wei, X. Li, J. Zou, D. Wu, and H. Zhu, AIP Advances 1, 032145 (2011).
http://dx.doi.org/10.1063/1.3631775
12.
12. H. J. Park, K. Kim, B. C. Woo, K. J. Kim, G. T. Kim, and W. S. Yun, Nano lett. 8, 3092 (2008).
http://dx.doi.org/10.1021/nl8010337
13.
13. C. Biswas and Y. H. Lee, Adv. Funct. Mater. 21, 3806 (2011).
http://dx.doi.org/10.1002/adfm.201101241
14.
14. X. Li, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano lett. 9, 4359 (2009).
http://dx.doi.org/10.1021/nl902623y
15.
15. S. Chandramohan, J. H. Kang, Y. S. Katharria, N. Han, Y. S. Beak, K. B. Ko, J. B. Park, B. D. Ryu, H. K. Kim, E. K. Suh, and C. H. Hong, J. Phys. D: Appl. Phys. 45, 145101 (2012).
http://dx.doi.org/10.1088/0022-3727/45/14/145101
16.
16. J. Min Lee, H. Yong Jeong, K. Jin Choi, and W. Il Park, Appl. Phys. Lett. 99, 041115 (2011).
http://dx.doi.org/10.1063/1.3595941
17.
17. J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, Nanotechnology 23, 255201 (2012).
http://dx.doi.org/10.1088/0957-4484/23/25/255201
18.
18. L. Fan, Z. Li, X. Li, K. Wang, M. Zhong, J. Wei, D. Wu, and H. Zhu, Nanoscale 3(12), 4946 (2011).
http://dx.doi.org/10.1039/c1nr11480h
19.
19. K. Ellmer, Nature Photonics 6, 809 (2012).
http://dx.doi.org/10.1038/nphoton.2012.282
20.
20. I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, R. Piner, G. Shvets, and R. S. Ruoff, Nano lett. 12, 5679 (2012).
http://dx.doi.org/10.1021/nl302870x
21.
21. L. Wang, Y. Zhang, X. Li, Z. Liu, E. Guo, X. Yi, J. Wang, H. Zhu, and G. Wang, J. Phys. D: Appl. Phys. 45, 505102 (2012).
http://dx.doi.org/10.1088/0022-3727/45/50/505102
22.
22. J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, Appl. Phys. Lett. 86, 062104 (2005).
http://dx.doi.org/10.1063/1.1863441
23.
23. R. Tung, Phys. Rev. B 45, 13509 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13509
24.
24. J. O. Song, J. S. Ha, and T. Y. Seong, IEEE T. Electron. Dev. 57, 42 (2010).
http://dx.doi.org/10.1109/TED.2009.2034506
25.
25. C. M. Zetterling, S. K. Lee, M. Ostling, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Solid State Electron. 46, 1433 (2004).
26.
26. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).
http://dx.doi.org/10.1002/adma.201201587
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4803647
Loading
/content/aip/journal/adva/3/4/10.1063/1.4803647
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4803647
2013-04-25
2016-09-27

Abstract

Incorporating Ag nanowires with graphene resulted in improved electrical conductivity and enhanced contact properties between graphene and p-GaN. The graphene/AgNWs hybrid films exhibited high transmittance and lower sheet resistance compared to bare graphene. The specific contact resistance between graphene and p-GaN reduced nearly an order of magnitude with the introduction of AgNWs. As a result, light emitting diodes based on the hybrid films showed 44% lower forward voltage and 2-fold higher light output power. The enhanced performance was attributed to the bridging by AgNWs of cracks, grain boundaries in graphene and the reduction of Schottky barrier height at graphene/ p-GaN interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4803647.html;jsessionid=FmttOohucrGSU1NRe_0cCLuE.x-aip-live-03?itemId=/content/aip/journal/adva/3/4/10.1063/1.4803647&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4803647&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4803647'
Right1,Right2,Right3,