Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, Nanotechnology 21, 175201 (2010).
2. Y. Zhang, L. Wang, X. Li, X. Yi, N. Zhang, J. Li, H. Zhu, and G. Wang, J. Appl. Phys. 111, 114501 (2012).
3. L. Wang, Y. Zhang, X. Li, Z. Liu, E. Guo, X. Yi, J. Wang, H. Zhu, and G. Wang, Appl. Phys. Lett. 101, 061102 (2012).
4. P. Blake, R. R. Nair, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
5. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
6. Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Nature Commun. 3, 827 (2012).
7. K. S. Novoselo and A. K. Geim, Nature Mater. 6, 183 (2007).
8. J. M. Lee, H. Y. Jeong, and W. I. Park, J. Electron. Mater. 39, 2190 (2010).
9. A. Kitt, J. W. Suk, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916 (2011).
10. K. S. Novoselo, M. I. Katsnelson, and A. K. Geim, Nature phys. 2, 620 (2006).
11. L. Fan, Z. Li, Z. Xu, K. Wang, J. Wei, X. Li, J. Zou, D. Wu, and H. Zhu, AIP Advances 1, 032145 (2011).
12. H. J. Park, K. Kim, B. C. Woo, K. J. Kim, G. T. Kim, and W. S. Yun, Nano lett. 8, 3092 (2008).
13. C. Biswas and Y. H. Lee, Adv. Funct. Mater. 21, 3806 (2011).
14. X. Li, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano lett. 9, 4359 (2009).
15. S. Chandramohan, J. H. Kang, Y. S. Katharria, N. Han, Y. S. Beak, K. B. Ko, J. B. Park, B. D. Ryu, H. K. Kim, E. K. Suh, and C. H. Hong, J. Phys. D: Appl. Phys. 45, 145101 (2012).
16. J. Min Lee, H. Yong Jeong, K. Jin Choi, and W. Il Park, Appl. Phys. Lett. 99, 041115 (2011).
17. J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, Nanotechnology 23, 255201 (2012).
18. L. Fan, Z. Li, X. Li, K. Wang, M. Zhong, J. Wei, D. Wu, and H. Zhu, Nanoscale 3(12), 4946 (2011).
19. K. Ellmer, Nature Photonics 6, 809 (2012).
20. I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, R. Piner, G. Shvets, and R. S. Ruoff, Nano lett. 12, 5679 (2012).
21. L. Wang, Y. Zhang, X. Li, Z. Liu, E. Guo, X. Yi, J. Wang, H. Zhu, and G. Wang, J. Phys. D: Appl. Phys. 45, 505102 (2012).
22. J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, Appl. Phys. Lett. 86, 062104 (2005).
23. R. Tung, Phys. Rev. B 45, 13509 (1992).
24. J. O. Song, J. S. Ha, and T. Y. Seong, IEEE T. Electron. Dev. 57, 42 (2010).
25. C. M. Zetterling, S. K. Lee, M. Ostling, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Solid State Electron. 46, 1433 (2004).
26. X. Huang, Z. Zeng, Z. Fan, J. Liu, and H. Zhang, Adv. Mater. 24, 5979 (2012).

Data & Media loading...


Article metrics loading...



Incorporating Ag nanowires with graphene resulted in improved electrical conductivity and enhanced contact properties between graphene and p-GaN. The graphene/AgNWs hybrid films exhibited high transmittance and lower sheet resistance compared to bare graphene. The specific contact resistance between graphene and p-GaN reduced nearly an order of magnitude with the introduction of AgNWs. As a result, light emitting diodes based on the hybrid films showed 44% lower forward voltage and 2-fold higher light output power. The enhanced performance was attributed to the bridging by AgNWs of cracks, grain boundaries in graphene and the reduction of Schottky barrier height at graphene/ p-GaN interface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd