Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/4/10.1063/1.4804067
1.
1. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
2.
2. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
3.
3. L. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).
http://dx.doi.org/10.1109/TCT.1971.1083337
4.
4. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
5.
5. Y. V. Pershin and M. Di Ventra, Adv. Phys. 60, 145 (2011).
http://dx.doi.org/10.1080/00018732.2010.544961
6.
6. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotech. 3, 429 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
7.
7. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, Nature 464, 873 (2010).
http://dx.doi.org/10.1038/nature08940
8.
8. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, and S. Han, Nat. nanotech. 5, 148 (2010).
http://dx.doi.org/10.1038/nnano.2009.456
9.
9. J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, and R. S. Williams, Adv. Mater. 21, 3754 (2009).
http://dx.doi.org/10.1002/adma.200900822
10.
10. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett. 10, 1297 (2010).
http://dx.doi.org/10.1021/nl904092h
11.
11. T. Chang, S. H. Jo, and W. Lu, ACS nano 5, 7669 (2011).
http://dx.doi.org/10.1021/nn202983n
12.
12. T. Chang, S. H. Jo, K. H. Kim, P. Sheridan, S. Gaba, and W. Lu, Appl. Phys. A: Mater. Sci. Process. 102, 857 (2011).
http://dx.doi.org/10.1007/s00339-011-6296-1
13.
13. H. J. Yuan, Y. Q. Chen, F. Yu, Y. H. Peng, X. W. He, D. Zhao, and D. S. Tang, Chinese Phys. B 20, 036103 (2011).
http://dx.doi.org/10.1088/1674-1056/20/3/036103
14.
14. J. M. Berak and M. Sienko, J. Solid State Chem. 2, 109 (1970).
http://dx.doi.org/10.1016/0022-4596(70)90040-X
15.
15. A. Polaczek, M. Pekala, and Z. Obuszko, J. Phys. Condens. Matter. 6, 7909 (1994).
http://dx.doi.org/10.1088/0953-8984/6/39/011
16.
16. V. Makarov and M. Trontelj, J. Eur. Ceram. Soc. 16, 791 (1996).
http://dx.doi.org/10.1016/0955-2219(95)00204-9
17.
17. Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, and L. M. Peng, Adv. Funct. Mater. 17, 2478 (2007).
http://dx.doi.org/10.1002/adfm.200600475
18.
18. Z. Fan and J. G. Lu, Appl. Phys. Lett. 86, 123510 (2005).
http://dx.doi.org/10.1063/1.1883715
19.
19. Y. Gu, E. S. Kwak, J. Lensch, J. Allen, T. W. Odom, and L. J. Lauhon, Appl. Phys. Lett. 87, 043111 (2005).
http://dx.doi.org/10.1063/1.1996851
20.
20. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley and Sons, Inc., Hoboken, N. J., 1971).
21.
21. R. T. Tung, Phys. Rev. B 45, 13509 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13509
22.
22. Z. Zhang, C. Jin, X. Liang, Q. Chen, and L. M. Peng, Appl. Phys. Lett. 88, 073102 (2006).
http://dx.doi.org/10.1063/1.2177362
23.
23. J. Carrano, T. Li, P. Grudowski, C. Eiting, R. Dupuis, and J. Campbell, Appl. Phys. Lett. 72, 542 (1998).
http://dx.doi.org/10.1063/1.120752
24.
24. J. Blanc and D. L. Staebler, Phys. Rev. B 4, 3548 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.3548
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/4/10.1063/1.4804067
Loading
/content/aip/journal/adva/3/4/10.1063/1.4804067
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/4/10.1063/1.4804067
2013-04-30
2016-09-25

Abstract

In the two-terminal Au/WO nanowire/Au electronic device with two Schottky barriers, drifting of oxygen vacancies under strong electric field induced by the bias voltage applied at short distance will result in the effective width of the reverse biased Schottky barrier decreasing, and then result in the memristive effect or resistive switching phenomenon. By unidirectional bias voltage sweeping, the Au/WO Schottky contact can be turned gradually and reversibly into Ohmic contact, and then the two-terminal Au/WO nanowire/Au resistive switching device can be reconfigured gradually and reversibly from non-rectifying state to either a forward or reverse rectifying state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/4/1.4804067.html;jsessionid=-Vi-ubvUhKDTPIkr6KyIKZNz.x-aip-live-06?itemId=/content/aip/journal/adva/3/4/10.1063/1.4804067&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/4/10.1063/1.4804067&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/4/10.1063/1.4804067'
Right1,Right2,Right3,