1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
First-principles study of native point defects in Bi2Se3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4804439
1.
1. J. Black, E. M. Conwbll, L. Seigle, and C. W. Spencer, J. Phys. Chem. Solids. 2, 240 (1957).
http://dx.doi.org/10.1016/0022-3697(57)90090-2
2.
2. R. W. G. Wyckoff, Crystal Structures (Krieger, Malabar, 1986).
3.
3. S. Urazhdin, D. Bilc, S. D. Mahanti, S. H. Tessmer, T. Kyratsi, and M. G. Kanatzidis, Phys. Rev. B 69, 085313 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085313
4.
4. H. M. Cui, H. Liu, X. Li, J. Y. Wang, F. Han, X. D. Zhang, and R. I. Boughton, J. Solid State Chem. 177, 4001 (2004).
http://dx.doi.org/10.1016/j.jssc.2004.06.042
5.
5. N. S. Patil, A. M. Sargar, S. R. Mane, and P. N. Bhosale, Appl. Surface Science 254, 5261 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.02.084
6.
6. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
http://dx.doi.org/10.1126/science.1133734
7.
7. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
8.
8. J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121306
9.
9. Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat.Phys. 6, 584 (2010).
http://dx.doi.org/10.1038/nphys1689
10.
10. W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, New J. Phys. 12, 065013 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065013
11.
11. X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
http://dx.doi.org/10.1063/1.3293411
12.
12. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
13.
13. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat.Phys. 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
14.
14. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.176602
15.
15. S. Urazhdin, D. Bilc, S. H. Tessmer, S. D. Mahanti, T. Kyratsi, and M. G. Kanatzidis, Phys. Rev. B 66, 161306 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.161306
16.
16. J. Horák, Z. Starý, P. Loǎťák, and J. Pancíř, J. Phys. Chem. Solids 51, 1353 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90017-A
17.
17. S. S. Lin and C. N. Liao, J. Appl. Phys. 110, 093707 (2011).
http://dx.doi.org/10.1063/1.3658256
18.
18. Y. Zhang, C. Z. Chang, K. He, L. L. Wang, X. Chen, J. F. Jia, X. C. Ma, and Qi-Kun Xue, Appl. Phys. Lett. 97, 194102 (2010).
http://dx.doi.org/10.1063/1.3516160
19.
19. G. Wang, X. G. Zhu, Y. Y. Sun, Y. Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L. L. Wang, X. C. Ma, J. F. Jia, S. B. Zhang, and Q. K. Xue, Adv. Mater. 23, 2929 (2011).
http://dx.doi.org/10.1002/adma.201100678
20.
20. G. L. Hao, X. Qi, Y. D. Liu, Z. Y. Huang, H. X. Li, K. Huang, J. Li, L. W. Yang, and J. X. Zhong, J. Appl. Phys. 111, 114312 (2012).
http://dx.doi.org/10.1063/1.4729011
21.
21. J. Bludská, I. Jakubec, S. Karamazov, J. Horák, and C. Uher, J. Solid State Chem. 183, 2813 (2010).
http://dx.doi.org/10.1016/j.jssc.2010.09.026
22.
22. arXiv:1201.2469vl [cond-mat.mtrl-sci] 12 Jan 2012.
23.
23. D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre, S. McKeown Walker, G. Balakrishnan, F. Baumberger, and C. R. A. Catlow, Adv. Mater. 24, 2154 (2012).
http://dx.doi.org/10.1002/adma.201200187
24.
24. J. M. Zhang, W. G. Zhu, Y. Zhang, D. Xiao, and Y. G. Yao, Phys. Rev. Lett. 109, 266405 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.266405
25.
25. W. Cheng and S. F. Ren, Phys. Rev. B 83, 094301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.094301
26.
26. H. Chen, W. G. Zhu, D. Xiao, and Z. Y. Zhang, Phys. Rev. Lett. 107, 056804 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056804
27.
27. W. L. Liu, X. Y. Peng, C. Tang, L. Z. Sun, K. W. Zhang, and J. X. Zhong, Phys. Rev. B 84, 245105 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245105
28.
28. Y. L. Wang, Y. Xu, Y. P. Jiang, J. W. Liu, C. Z. Chang, M. Chen, Z. Li, C. L. Song, L. L. Wang, K. He, X. Chen, W. H. Duan, Q. K. Xue, and X. C. Ma, Phys. Rev. B 84, 075335 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075335
29.
29. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
30.
30. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
31.
31. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
32.
32. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
33.
33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
34. R. W. G. Wyckoff, Crystal Structures, Vol. 2 (John Wiley and sons, New York, 1964).
35.
35. P. Cucka and C. S. Barrett, Acta Crystallogr. 15, 865 (1962).
http://dx.doi.org/10.1107/S0365110X62002297
36.
36. R. Keller, W. B. Holzapfel, and H. Schulz, Phys. Rev. B 16, 4404 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.4404
37.
37. Oleg V. Yazyev, Joel E. Moore, and Steven G. Louie, Phys. Rev. Lett 105, 266806 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266806
38.
38. P. Larson, V. A. Greanya, W. C. Tonjes, Rong Liu, S. D. Mahanti, and C. G. Olson, Phys. Rev. B 65, 085108 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.085108
39.
39. S.-H. Wei and S. B. Zhang, Phys. Rev. B. 66, 155211 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155211
40.
40. S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2339
41.
41. G. Makov and M. C. Payne, Phys. Rev. B. 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
42.
42. D. B. Laks, C. G. Van de Walle, G. F. Neumark, P. E. Blöchl, and S. T. Pantelides, Phys. Rev. B. 45, 10965 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.10965
43.
43. S. Pöykkö, M. J. Puska, and R. M. Nieminen, Phys. Rev. B. 53, 3813 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3813
44.
44. T. Mattila and A. Zunger, Phys. Rev. B. 58, 1367 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1367
45.
45. T. Tanaka, K. Matsunaga, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B. 68, 205213 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.205213
46.
46. A. Hashibon and C. Elsässer, Phys. Rev. B. 84, 144117 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144117
47.
47. H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. 12, 103038 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/103038
48.
48. C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. L. Wang, K. He, X. Chen, J. F. Jia, Y. Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. C. Ma, Appl. Phys. Lett. 97, 143118 (2010).
http://dx.doi.org/10.1063/1.3494595
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804439
Loading
/content/aip/journal/adva/3/5/10.1063/1.4804439
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4804439
2013-05-08
2014-09-19

Abstract

Using first-principles method within the framework of the density functional theory, we study the influence of native point defect on the structural and electronic properties of BiSe. Se vacancy in BiSe is a double donor, and Bi vacancy is a triple acceptor. Se antisite (Se) is always an active donor in the system because its donor level (ɛ(+1/0)) enters into the conduction band. Interestingly, Bi antisite (Bi) in BiSe is an amphoteric dopant, acting as a donor when μ < 0.119 eV (the material is typical p-type) and as an acceptor when μ > 0.251 eV (the material is typical n-type). The formation energies under different growth environments (such as Bi-rich or Se-rich) indicate that under Se-rich condition, Se is the most stable native defect independent of electron chemical potential μ. Under Bi-rich condition, Se vacancy is the most stable native defect except for under the growth window as μ > 0.262 eV (the material is typical n-type) and Δμ < −0.459 eV (Bi-rich), under such growth window Bi carrying one negative charge is the most stable one.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4804439.html;jsessionid=vupblgwv7oof.x-aip-live-03?itemId=/content/aip/journal/adva/3/5/10.1063/1.4804439&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: First-principles study of native point defects in Bi2Se3
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804439
10.1063/1.4804439
SEARCH_EXPAND_ITEM