Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Black, E. M. Conwbll, L. Seigle, and C. W. Spencer, J. Phys. Chem. Solids. 2, 240 (1957).
2. R. W. G. Wyckoff, Crystal Structures (Krieger, Malabar, 1986).
3. S. Urazhdin, D. Bilc, S. D. Mahanti, S. H. Tessmer, T. Kyratsi, and M. G. Kanatzidis, Phys. Rev. B 69, 085313 (2004).
4. H. M. Cui, H. Liu, X. Li, J. Y. Wang, F. Han, X. D. Zhang, and R. I. Boughton, J. Solid State Chem. 177, 4001 (2004).
5. N. S. Patil, A. M. Sargar, S. R. Mane, and P. N. Bhosale, Appl. Surface Science 254, 5261 (2008).
6. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
7. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
8. J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 (2007).
9. Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat.Phys. 6, 584 (2010).
10. W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, New J. Phys. 12, 065013 (2010).
11. X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
12. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).
13. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat.Phys. 460, 1101 (2009).
14. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
15. S. Urazhdin, D. Bilc, S. H. Tessmer, S. D. Mahanti, T. Kyratsi, and M. G. Kanatzidis, Phys. Rev. B 66, 161306 (2002).
16. J. Horák, Z. Starý, P. Loǎťák, and J. Pancíř, J. Phys. Chem. Solids 51, 1353 (1990).
17. S. S. Lin and C. N. Liao, J. Appl. Phys. 110, 093707 (2011).
18. Y. Zhang, C. Z. Chang, K. He, L. L. Wang, X. Chen, J. F. Jia, X. C. Ma, and Qi-Kun Xue, Appl. Phys. Lett. 97, 194102 (2010).
19. G. Wang, X. G. Zhu, Y. Y. Sun, Y. Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L. L. Wang, X. C. Ma, J. F. Jia, S. B. Zhang, and Q. K. Xue, Adv. Mater. 23, 2929 (2011).
20. G. L. Hao, X. Qi, Y. D. Liu, Z. Y. Huang, H. X. Li, K. Huang, J. Li, L. W. Yang, and J. X. Zhong, J. Appl. Phys. 111, 114312 (2012).
21. J. Bludská, I. Jakubec, S. Karamazov, J. Horák, and C. Uher, J. Solid State Chem. 183, 2813 (2010).
22. arXiv:1201.2469vl [cond-mat.mtrl-sci] 12 Jan 2012.
23. D. O. Scanlon, P. D. C. King, R. P. Singh, A. de la Torre, S. McKeown Walker, G. Balakrishnan, F. Baumberger, and C. R. A. Catlow, Adv. Mater. 24, 2154 (2012).
24. J. M. Zhang, W. G. Zhu, Y. Zhang, D. Xiao, and Y. G. Yao, Phys. Rev. Lett. 109, 266405 (2012).
25. W. Cheng and S. F. Ren, Phys. Rev. B 83, 094301 (2011).
26. H. Chen, W. G. Zhu, D. Xiao, and Z. Y. Zhang, Phys. Rev. Lett. 107, 056804 (2011).
27. W. L. Liu, X. Y. Peng, C. Tang, L. Z. Sun, K. W. Zhang, and J. X. Zhong, Phys. Rev. B 84, 245105 (2011).
28. Y. L. Wang, Y. Xu, Y. P. Jiang, J. W. Liu, C. Z. Chang, M. Chen, Z. Li, C. L. Song, L. L. Wang, K. He, X. Chen, W. H. Duan, Q. K. Xue, and X. C. Ma, Phys. Rev. B 84, 075335 (2011).
29. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
30. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
31. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
32. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
34. R. W. G. Wyckoff, Crystal Structures, Vol. 2 (John Wiley and sons, New York, 1964).
35. P. Cucka and C. S. Barrett, Acta Crystallogr. 15, 865 (1962).
36. R. Keller, W. B. Holzapfel, and H. Schulz, Phys. Rev. B 16, 4404 (1977).
37. Oleg V. Yazyev, Joel E. Moore, and Steven G. Louie, Phys. Rev. Lett 105, 266806 (2010).
38. P. Larson, V. A. Greanya, W. C. Tonjes, Rong Liu, S. D. Mahanti, and C. G. Olson, Phys. Rev. B 65, 085108 (2002).
39. S.-H. Wei and S. B. Zhang, Phys. Rev. B. 66, 155211 (2002).
40. S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
41. G. Makov and M. C. Payne, Phys. Rev. B. 51, 4014 (1995).
42. D. B. Laks, C. G. Van de Walle, G. F. Neumark, P. E. Blöchl, and S. T. Pantelides, Phys. Rev. B. 45, 10965 (1992).
43. S. Pöykkö, M. J. Puska, and R. M. Nieminen, Phys. Rev. B. 53, 3813 (1996).
44. T. Mattila and A. Zunger, Phys. Rev. B. 58, 1367 (1998).
45. T. Tanaka, K. Matsunaga, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B. 68, 205213 (2003).
46. A. Hashibon and C. Elsässer, Phys. Rev. B. 84, 144117 (2011).
47. H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. 12, 103038 (2010).
48. C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. L. Wang, K. He, X. Chen, J. F. Jia, Y. Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. C. Ma, Appl. Phys. Lett. 97, 143118 (2010).

Data & Media loading...


Article metrics loading...



Using first-principles method within the framework of the density functional theory, we study the influence of native point defect on the structural and electronic properties of BiSe. Se vacancy in BiSe is a double donor, and Bi vacancy is a triple acceptor. Se antisite (Se) is always an active donor in the system because its donor level (ɛ(+1/0)) enters into the conduction band. Interestingly, Bi antisite (Bi) in BiSe is an amphoteric dopant, acting as a donor when μ < 0.119 eV (the material is typical p-type) and as an acceptor when μ > 0.251 eV (the material is typical n-type). The formation energies under different growth environments (such as Bi-rich or Se-rich) indicate that under Se-rich condition, Se is the most stable native defect independent of electron chemical potential μ. Under Bi-rich condition, Se vacancy is the most stable native defect except for under the growth window as μ > 0.262 eV (the material is typical n-type) and Δμ < −0.459 eV (Bi-rich), under such growth window Bi carrying one negative charge is the most stable one.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd