1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4804541
1.
1. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010);
http://dx.doi.org/10.1126/science.1181862
1.P. Zubko, S. Gariglio, M. Gabay, Philippe Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Mater Phys. 2, 141 (2011);
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
1.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
2.
2. J. M. Rondinelli, S. J. May, and J. W. Freeland, MRS Bulletin 37, 261 (2012);
http://dx.doi.org/10.1557/mrs.2012.49
2.J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011);
http://dx.doi.org/10.1002/adma.201101152
2.J. Chakhalian, A. J. Millis, and J. Rondinelli, Nat. Mater. 11, 92 (2012).
http://dx.doi.org/10.1038/nmat3225
3.
3. H. Rotella, U. Lüders, P.-E. Janolin, V. H. Dao, D. Chateigner, R. Feyerherm, E. Dudzik, and W. Prellier, Phys. Rev. B 85, 18401 (2012);
http://dx.doi.org/10.1103/PhysRevB.85.184101
3.A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B. 83, 064101 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064101
4.
4. A. J. Hatt and N. A. Spaldin, Phys. Rev. B 82, 195402 (2010);
http://dx.doi.org/10.1103/PhysRevB.82.195402
4.S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010);
http://dx.doi.org/10.1103/PhysRevB.82.014110
4.A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054109
5.
5. K. J. Choi, S. H. Baek, H. W. Jang, L. J. Belenky, M. Lyubchenko, and C.-B. Eom, Adv. Mater. 22, 759 (2010).
http://dx.doi.org/10.1002/adma.200902355
6.
6. D. L. Proffit, H. W. Jang, S. Lee, C. T. Nelson, X. Q. Pan, M. S. Rzchowski, and C.-B. Eom, Appl. Phys. Lett. 93, 111912 (2008).
http://dx.doi.org/10.1063/1.2979237
7.
7. S. H. Chang, Y. J. Chang, S. Y. Jang, D. W. Jeong, C. U. Jung, Y.-J. Kim, J.-S. Chung, and T. W. Noh, Phys. Rev. B 84, 104101 (2011);
http://dx.doi.org/10.1103/PhysRevB.84.104101
7.D. Kan and Y. Shimakawa, Cryst. Growth Des. 11, 5483 (2011).
http://dx.doi.org/10.1021/cg201070n
8.
8. Y. Ogimoto, N. Takubo, M. Nakamura, H. Tamaru, M. Izumi, and K. Miyano, Appl. Phys. Lett. 86, 112513 (2005);
http://dx.doi.org/10.1063/1.1885191
8.M. Nakamura, Y. Ogimoto, H. Tamaru, M. Izumi, and K. Miyano, Appl. Phys. Lett. 86, 182504 (2005);
http://dx.doi.org/10.1063/1.1923754
8.Y. Wakabayashi, D. Bizen, Y. Kubo, H. Nakao, Y. Murakami, M. Nakamura, Y. Ogimoto, K. Miyano, and H. Sawa, J. Phys. Soc. Jpn. 77, 014712 (2008).
http://dx.doi.org/10.1143/JPSJ.77.014712
9.
9. A. T. Zayak, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B 77, 214410 (2008);
http://dx.doi.org/10.1103/PhysRevB.77.214410
9.A. T. Zayak, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B 74, 094104 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.094104
10.
10. J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B 82, 113402 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.113402
11.
11. J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227203
12.
12. A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.087204
13.
13. E. Bousquet, M. Dawber, N. Stucki, C. Lichternsteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature 452, 732 (2008).
http://dx.doi.org/10.1038/nature06817
14.
14. H. Boschker, J. Kautz, E. P. Houwman, W. Siemons, D. H. A. Blank, M. Huijben, G. Koster, A. Vailionis, and G. Rijinders, Phys. Rev. Lett. 109, 157207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.157207
15.
15. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79, 081405R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081405
16.
16. S. Y. Moon, D.-H. Kim, H. J. Chang, J. K. Choi, C.-Y. Kang, H. J. Choi, S.-H. Hong, S.-H. Baek, J.-S. Kim, and H. W. Jang, Appl. Phys. Lett. 102, 012903 (2013).
http://dx.doi.org/10.1063/1.4773986
17.
17. M. Ziese, H. C. Semmelhack, and K. H. Han, Phys. Rev. B 68, 134444 (2003);
http://dx.doi.org/10.1103/PhysRevB.68.134444
17.L. Abad, V. Laukhin, S. Valencia, A. Gaup, W. Gudat, L. Balcells, and B. Martínez, Adv. Func. Mater 17, 3918 (2007).
http://dx.doi.org/10.1002/adfm.200700137
18.
18. A. Biswas, M. Rajeswari, R. C. Srivastava, Y. H. Li, T. Venkatesan, R. L. Greene, and A. J. Millis, Phys. Rev. B 61, 9665 (2000);
http://dx.doi.org/10.1103/PhysRevB.61.9665
18.M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe, J. Appl. Phys. 91, 9930 (2002);
http://dx.doi.org/10.1063/1.1478787
18.M. Bibes, S. Valencia, L. Balcells, B. Martínez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B 66, 134416 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134416
19.
19. J. Li, C. K. Ong, J. M. Liu, Q. Huang, and S. J. Wang, Appl. Phys. Lett. 76, 1051 (2000);
http://dx.doi.org/10.1063/1.125935
19.J. Sakai, N. Ito, and S. Imai, J. Appl. Phys. 99, 08Q318 (2006).
http://dx.doi.org/10.1063/1.2176323
20.
20. L. F. Kourkoutis, J. H. Song, H. Y. Hwang, and D. A. Muller, Proc. Natl. Acad. Sci. U.S.A. 107, 11682 (2010).
http://dx.doi.org/10.1073/pnas.1005693107
21.
21. T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, J. Appl. Phys. 103, 103703 (2008).
http://dx.doi.org/10.1063/1.2921972
22.
22. S. A. Chambers, Adv. Mater. 22, 219 (2010).
http://dx.doi.org/10.1002/adma.200901867
23.
23. G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank,and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.253
24.
24. J. Shin, S. V. Kalinin, A. Y. Borisevich, E. W. Plummer, and A. P. Baddorf, Appl. Phys. Lett. 91, 202901 (2007).
http://dx.doi.org/10.1063/1.2790477
25.
25. R. A. Rao, Q. Gan, and C.-B. Eom, Appl. Phys. Lett. 71, 1171 (1997).
http://dx.doi.org/10.1063/1.119616
26.
26. S. W. Jin, G. Y. Gao, Z. Z. Yin, Z. Huang, X. Y. Zhou, and W. B. Wu, Phys. Rev. B 75, 212401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.212401
27.
27. M. P. Siegal, J. M. Phillips, R. B. van Dover, T. H. Tiefel, and J. H. Marshall, J. Appl. Phys. 68, 6353 (1990).
http://dx.doi.org/10.1063/1.346881
28.
28. S. H. Seo, H. C. Kang, H. W. Jang, and D. Y. Noh, Phys. Rev. B 71, 012412 (2005);
http://dx.doi.org/10.1103/PhysRevB.71.012412
28.P. Murugavel, J. H. Lee, K.-B. Lee, J. H. Park, J.-S. Chung, J.-G. Yoon, and T. W. Noh, J. Phys. D: Appl. Phys. 35, 3166 (2002).
http://dx.doi.org/10.1088/0022-3727/35/24/303
29.
29. G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 71, 1171 (2007).
30.
30. L. Vasylechko, L. Akselrud, W. Morgenroth, U. Bismayer, A. Matkovskii, and D. Savytskii, J. Alloys Compd. 297, 46 (2000).
http://dx.doi.org/10.1016/S0925-8388(99)00603-9
31.
31. Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, K. Ghosh, and R. L. Greene, Phys. Rev. B 58, 2684 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2684
32.
32. Z. Huang, G. Y. Gao, Z. Z. Yin, X. X. Feng, Y. Z. Chen, X. R. Zhao, J. R. Sun, and W. B. Wu, J. Appl. Phys. 105, 113919 (2009);
http://dx.doi.org/10.1063/1.3141751
32.F. H. Zhang, Z. Huang, G. Y. Gao, P. F. Chen, L. F. Wang, X. L. Tan, and W. B. Wu, Appl. Phys. Lett. 96, 062507 (2010).
http://dx.doi.org/10.1063/1.3313937
33.
33. L. F. Wang, Z. Huang, X. L. Tan, P. F. Chen, B. W. Zhi, G. M. Li, and W. B. Wu, Appl. Phys. Lett. 97, 242507 (2010).
http://dx.doi.org/10.1063/1.3524193
34.
34. Z. Huang, L. F. Wang, X. L. Tan, P. F. Chen, G. Y. Gao, and W. B. Wu, J. Appl. Phys. 108, 083912 (2010).
http://dx.doi.org/10.1063/1.3499650
35.
35. Z. Huang, L. F. Wang, P. F. Chen, G. Y. Gao, X. L. Tan, B. W. Zhi, X. F. Xuan, and W. B. Wu, Phys. Rev. B 86, 014410 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.014410
36.
36. Powder diffractions standards: 87-1608 and 87-1084.
37.
37. W. Wu, C. Israel, N. Hur, S. Park, S.-W. Cheong, and A. De Lozanne, Nat. Mater. 5, 881 (2006).
http://dx.doi.org/10.1038/nmat1743
38.
38. H. Kuwahara, Y. Moritomo, Y. Tomioka, A. Asamitsu, M. Kasai, R. Kumai, and Y. Tokura, Phys. Rev. B 56, 9386 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.9386
39.
39. F. Sánchez, G. Herranz, I. C. Infante, J. Fontcuberta, M. V. García-Cuenca, C. Ferrater, and M. Varela, Appl. Phys. Lett. 85, 1981 (2004).
http://dx.doi.org/10.1063/1.1786361
40.
40. V. A. Vas'ko, C. A. Nordman, P. A. Kraus, V. S. Achutharaman, A. R. Ruosi, and A. M. Goldman, Appl. Phys. Lett. 68, 2571 (1996);
http://dx.doi.org/10.1063/1.116187
40.M. Izumi, Y. Konishi, T. Nishihara, S. Hayashi, M. Shinohara, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 73, 2497 (1998).
http://dx.doi.org/10.1063/1.122494
41.
41. T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 74, 2531 (1999).
http://dx.doi.org/10.1063/1.123888
42.
42. Z. H. Wang, O. I. Lebedev, G. Van Tendeloo, G. Cristiani, and H.-U. Habermeier, Phys. Rev. B 77, 115330 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115330
43.
43. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2011);
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
43.Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).
http://dx.doi.org/10.1088/0034-4885/69/3/R06
44.
44. J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 94, 065501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.065501
45.
45. A. Vailionis, W. Siemons, and G. Koster, Appl. Phys. Lett. 93, 051909 (2008);
http://dx.doi.org/10.1063/1.2967878
45.A. Vasudevarao, S. Denev, M. D. Biegalski, Y. Li, L.-Q. Chen, S. Trolier-McKinstry, D. G. Schlom, and V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008).
http://dx.doi.org/10.1063/1.2921789
46.
46. R. Tamazyan and S. van Smaalen, Acta Cryst. B 63, 190 (2007).
http://dx.doi.org/10.1107/S010876810605244X
47.
47. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 132104 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.132104
48.
48. M. W. Lufaso and P. M. Woodward, Acta Cryst. B 60, 10 (2004).
http://dx.doi.org/10.1107/S0108768103026661
49.
49. P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schiffer, and A. P. Ramirez, Phys. Rev. Lett. 75, 4488 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4488
50.
50. A. J. Millis, Phys. Rev. B 53, 8434 (1996);
http://dx.doi.org/10.1103/PhysRevB.53.8434
50.K. Yamamoto, T. Kimura, T. Ishikawa, T. Katsufuji, and Y. Tokura, Phys. Rev. B 61, 14706 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14706
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804541
Loading
/content/aip/journal/adva/3/5/10.1063/1.4804541
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4804541
2013-05-01
2014-11-25

Abstract

Bulk LaCaMnO (LCMO) and NdGaO (NGO) have the same symmetry but different orthorhombic lattice distortions, yielding an anisotropic strain state in the LCMO epitaxial film grown on the NGO(001) substrate. The films are optimally doped in a ferromagnetic-metal ground state, after being annealed in oxygen atmosphere, however, they show strikingly an antiferromagnetic-insulating (AFI) transition near 250 K, leading to a phase separation state with tunable phase instability at the temperatures below. To explain this drastic strain effect, the films with various thicknesses were annealed under various annealing parameters. We demonstrate that the annealing can surprisingly improve the epitaxial quality, resulting in the films with true substrate coherency and the AFI ground state. And the close linkage between the film morphology and electronic phase evolution implies that the strain-mediated octahedral deformation and rotation could be assisted by annealing, and moreover, play a key role in controlling the properties of oxide heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4804541.html;jsessionid=boatg9ccp1lo4.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4804541&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub>/NdGaO<sub>3</sub>(001) films
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804541
10.1063/1.4804541
SEARCH_EXPAND_ITEM