1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4804541
1.
1. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010);
http://dx.doi.org/10.1126/science.1181862
1.P. Zubko, S. Gariglio, M. Gabay, Philippe Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Mater Phys. 2, 141 (2011);
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
1.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
2.
2. J. M. Rondinelli, S. J. May, and J. W. Freeland, MRS Bulletin 37, 261 (2012);
http://dx.doi.org/10.1557/mrs.2012.49
2.J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011);
http://dx.doi.org/10.1002/adma.201101152
2.J. Chakhalian, A. J. Millis, and J. Rondinelli, Nat. Mater. 11, 92 (2012).
http://dx.doi.org/10.1038/nmat3225
3.
3. H. Rotella, U. Lüders, P.-E. Janolin, V. H. Dao, D. Chateigner, R. Feyerherm, E. Dudzik, and W. Prellier, Phys. Rev. B 85, 18401 (2012);
http://dx.doi.org/10.1103/PhysRevB.85.184101
3.A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B. 83, 064101 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064101
4.
4. A. J. Hatt and N. A. Spaldin, Phys. Rev. B 82, 195402 (2010);
http://dx.doi.org/10.1103/PhysRevB.82.195402
4.S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010);
http://dx.doi.org/10.1103/PhysRevB.82.014110
4.A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054109
5.
5. K. J. Choi, S. H. Baek, H. W. Jang, L. J. Belenky, M. Lyubchenko, and C.-B. Eom, Adv. Mater. 22, 759 (2010).
http://dx.doi.org/10.1002/adma.200902355
6.
6. D. L. Proffit, H. W. Jang, S. Lee, C. T. Nelson, X. Q. Pan, M. S. Rzchowski, and C.-B. Eom, Appl. Phys. Lett. 93, 111912 (2008).
http://dx.doi.org/10.1063/1.2979237
7.
7. S. H. Chang, Y. J. Chang, S. Y. Jang, D. W. Jeong, C. U. Jung, Y.-J. Kim, J.-S. Chung, and T. W. Noh, Phys. Rev. B 84, 104101 (2011);
http://dx.doi.org/10.1103/PhysRevB.84.104101
7.D. Kan and Y. Shimakawa, Cryst. Growth Des. 11, 5483 (2011).
http://dx.doi.org/10.1021/cg201070n
8.
8. Y. Ogimoto, N. Takubo, M. Nakamura, H. Tamaru, M. Izumi, and K. Miyano, Appl. Phys. Lett. 86, 112513 (2005);
http://dx.doi.org/10.1063/1.1885191
8.M. Nakamura, Y. Ogimoto, H. Tamaru, M. Izumi, and K. Miyano, Appl. Phys. Lett. 86, 182504 (2005);
http://dx.doi.org/10.1063/1.1923754
8.Y. Wakabayashi, D. Bizen, Y. Kubo, H. Nakao, Y. Murakami, M. Nakamura, Y. Ogimoto, K. Miyano, and H. Sawa, J. Phys. Soc. Jpn. 77, 014712 (2008).
http://dx.doi.org/10.1143/JPSJ.77.014712
9.
9. A. T. Zayak, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B 77, 214410 (2008);
http://dx.doi.org/10.1103/PhysRevB.77.214410
9.A. T. Zayak, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B 74, 094104 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.094104
10.
10. J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B 82, 113402 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.113402
11.
11. J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227203
12.
12. A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.087204
13.
13. E. Bousquet, M. Dawber, N. Stucki, C. Lichternsteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature 452, 732 (2008).
http://dx.doi.org/10.1038/nature06817
14.
14. H. Boschker, J. Kautz, E. P. Houwman, W. Siemons, D. H. A. Blank, M. Huijben, G. Koster, A. Vailionis, and G. Rijinders, Phys. Rev. Lett. 109, 157207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.157207
15.
15. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79, 081405R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081405
16.
16. S. Y. Moon, D.-H. Kim, H. J. Chang, J. K. Choi, C.-Y. Kang, H. J. Choi, S.-H. Hong, S.-H. Baek, J.-S. Kim, and H. W. Jang, Appl. Phys. Lett. 102, 012903 (2013).
http://dx.doi.org/10.1063/1.4773986
17.
17. M. Ziese, H. C. Semmelhack, and K. H. Han, Phys. Rev. B 68, 134444 (2003);
http://dx.doi.org/10.1103/PhysRevB.68.134444
17.L. Abad, V. Laukhin, S. Valencia, A. Gaup, W. Gudat, L. Balcells, and B. Martínez, Adv. Func. Mater 17, 3918 (2007).
http://dx.doi.org/10.1002/adfm.200700137
18.
18. A. Biswas, M. Rajeswari, R. C. Srivastava, Y. H. Li, T. Venkatesan, R. L. Greene, and A. J. Millis, Phys. Rev. B 61, 9665 (2000);
http://dx.doi.org/10.1103/PhysRevB.61.9665
18.M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe, J. Appl. Phys. 91, 9930 (2002);
http://dx.doi.org/10.1063/1.1478787
18.M. Bibes, S. Valencia, L. Balcells, B. Martínez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B 66, 134416 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134416
19.
19. J. Li, C. K. Ong, J. M. Liu, Q. Huang, and S. J. Wang, Appl. Phys. Lett. 76, 1051 (2000);
http://dx.doi.org/10.1063/1.125935
19.J. Sakai, N. Ito, and S. Imai, J. Appl. Phys. 99, 08Q318 (2006).
http://dx.doi.org/10.1063/1.2176323
20.
20. L. F. Kourkoutis, J. H. Song, H. Y. Hwang, and D. A. Muller, Proc. Natl. Acad. Sci. U.S.A. 107, 11682 (2010).
http://dx.doi.org/10.1073/pnas.1005693107
21.
21. T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, J. Appl. Phys. 103, 103703 (2008).
http://dx.doi.org/10.1063/1.2921972
22.
22. S. A. Chambers, Adv. Mater. 22, 219 (2010).
http://dx.doi.org/10.1002/adma.200901867
23.
23. G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank,and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.253
24.
24. J. Shin, S. V. Kalinin, A. Y. Borisevich, E. W. Plummer, and A. P. Baddorf, Appl. Phys. Lett. 91, 202901 (2007).
http://dx.doi.org/10.1063/1.2790477
25.
25. R. A. Rao, Q. Gan, and C.-B. Eom, Appl. Phys. Lett. 71, 1171 (1997).
http://dx.doi.org/10.1063/1.119616
26.
26. S. W. Jin, G. Y. Gao, Z. Z. Yin, Z. Huang, X. Y. Zhou, and W. B. Wu, Phys. Rev. B 75, 212401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.212401
27.
27. M. P. Siegal, J. M. Phillips, R. B. van Dover, T. H. Tiefel, and J. H. Marshall, J. Appl. Phys. 68, 6353 (1990).
http://dx.doi.org/10.1063/1.346881
28.
28. S. H. Seo, H. C. Kang, H. W. Jang, and D. Y. Noh, Phys. Rev. B 71, 012412 (2005);
http://dx.doi.org/10.1103/PhysRevB.71.012412
28.P. Murugavel, J. H. Lee, K.-B. Lee, J. H. Park, J.-S. Chung, J.-G. Yoon, and T. W. Noh, J. Phys. D: Appl. Phys. 35, 3166 (2002).
http://dx.doi.org/10.1088/0022-3727/35/24/303
29.
29. G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 71, 1171 (2007).
30.
30. L. Vasylechko, L. Akselrud, W. Morgenroth, U. Bismayer, A. Matkovskii, and D. Savytskii, J. Alloys Compd. 297, 46 (2000).
http://dx.doi.org/10.1016/S0925-8388(99)00603-9
31.
31. Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, K. Ghosh, and R. L. Greene, Phys. Rev. B 58, 2684 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.2684
32.
32. Z. Huang, G. Y. Gao, Z. Z. Yin, X. X. Feng, Y. Z. Chen, X. R. Zhao, J. R. Sun, and W. B. Wu, J. Appl. Phys. 105, 113919 (2009);
http://dx.doi.org/10.1063/1.3141751
32.F. H. Zhang, Z. Huang, G. Y. Gao, P. F. Chen, L. F. Wang, X. L. Tan, and W. B. Wu, Appl. Phys. Lett. 96, 062507 (2010).
http://dx.doi.org/10.1063/1.3313937
33.
33. L. F. Wang, Z. Huang, X. L. Tan, P. F. Chen, B. W. Zhi, G. M. Li, and W. B. Wu, Appl. Phys. Lett. 97, 242507 (2010).
http://dx.doi.org/10.1063/1.3524193
34.
34. Z. Huang, L. F. Wang, X. L. Tan, P. F. Chen, G. Y. Gao, and W. B. Wu, J. Appl. Phys. 108, 083912 (2010).
http://dx.doi.org/10.1063/1.3499650
35.
35. Z. Huang, L. F. Wang, P. F. Chen, G. Y. Gao, X. L. Tan, B. W. Zhi, X. F. Xuan, and W. B. Wu, Phys. Rev. B 86, 014410 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.014410
36.
36. Powder diffractions standards: 87-1608 and 87-1084.
37.
37. W. Wu, C. Israel, N. Hur, S. Park, S.-W. Cheong, and A. De Lozanne, Nat. Mater. 5, 881 (2006).
http://dx.doi.org/10.1038/nmat1743
38.
38. H. Kuwahara, Y. Moritomo, Y. Tomioka, A. Asamitsu, M. Kasai, R. Kumai, and Y. Tokura, Phys. Rev. B 56, 9386 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.9386
39.
39. F. Sánchez, G. Herranz, I. C. Infante, J. Fontcuberta, M. V. García-Cuenca, C. Ferrater, and M. Varela, Appl. Phys. Lett. 85, 1981 (2004).
http://dx.doi.org/10.1063/1.1786361
40.
40. V. A. Vas'ko, C. A. Nordman, P. A. Kraus, V. S. Achutharaman, A. R. Ruosi, and A. M. Goldman, Appl. Phys. Lett. 68, 2571 (1996);
http://dx.doi.org/10.1063/1.116187
40.M. Izumi, Y. Konishi, T. Nishihara, S. Hayashi, M. Shinohara, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 73, 2497 (1998).
http://dx.doi.org/10.1063/1.122494
41.
41. T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 74, 2531 (1999).
http://dx.doi.org/10.1063/1.123888
42.
42. Z. H. Wang, O. I. Lebedev, G. Van Tendeloo, G. Cristiani, and H.-U. Habermeier, Phys. Rev. B 77, 115330 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115330
43.
43. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2011);
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
43.Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).
http://dx.doi.org/10.1088/0034-4885/69/3/R06
44.
44. J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 94, 065501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.065501
45.
45. A. Vailionis, W. Siemons, and G. Koster, Appl. Phys. Lett. 93, 051909 (2008);
http://dx.doi.org/10.1063/1.2967878
45.A. Vasudevarao, S. Denev, M. D. Biegalski, Y. Li, L.-Q. Chen, S. Trolier-McKinstry, D. G. Schlom, and V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008).
http://dx.doi.org/10.1063/1.2921789
46.
46. R. Tamazyan and S. van Smaalen, Acta Cryst. B 63, 190 (2007).
http://dx.doi.org/10.1107/S010876810605244X
47.
47. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 132104 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.132104
48.
48. M. W. Lufaso and P. M. Woodward, Acta Cryst. B 60, 10 (2004).
http://dx.doi.org/10.1107/S0108768103026661
49.
49. P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schiffer, and A. P. Ramirez, Phys. Rev. Lett. 75, 4488 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4488
50.
50. A. J. Millis, Phys. Rev. B 53, 8434 (1996);
http://dx.doi.org/10.1103/PhysRevB.53.8434
50.K. Yamamoto, T. Kimura, T. Ishikawa, T. Katsufuji, and Y. Tokura, Phys. Rev. B 61, 14706 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14706
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804541
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The schematic top views of LCMO(001) (green) and NGO(001) (wine) unit cells. The strain state of the commensurate LCMO/NGO(001) film was analyzed via the in-plane lattice mismatches in the orthorhombic index. (b) - curves of 20 and 40 nm films annealed at 780 °C for 10 h. The curve of 1 h-annealed 40 nm film was also inserted for comparison. The arrows denote the thermal processes. (c) scans from the 10 h-annealed films of 20 and 40 nm thick. The sharp peaks at = 47.074° can be indexed as NGO(004), and the broad humps at the higher angle side stands for the LCMO(004) reflections. (d) RSMs measured from the as-grown and 10 h-annealed films (40 nm) around (116) reflection. The open and solid arrows denote the reflections from the films and the substrates, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

AFM images (1 × 1 μm) scanned from (a)-(e) as-grown and (f)-(j) 5 h-annealed films with different thicknesses as denoted. The as-grown film morphologies for all the thickness show grainy surface, whereas the annealed film morphologies show single-unit-cell stepped terraces evolving with film thickness. (k) [(l)] The ZFC-ZFW - curves measured from the as-grown (annealed) films.

Image of FIG. 3.

Click to view

FIG. 3.

(a) ZFC-FW and (c) FC-ZFW - curves measured from the LCMO/NGO(001) films with various thickness, as denoted. The solid arrows denote the cooling or warming. The ZFC-ZFW - curves (gray, dashed line) were also inserted in (a) for comparison. In (c) the AFI reentrance temperatures were marked by the solid triangles. (b) [(d)] The isothermal - curves measured after ZFC the 16, 24 and 40 nm films to 5 K (130 K). The open arrows denote the cycling of (0→ 4→ 0 T), and the AFI phase melting (reentry) fields ( ) were marked by the solid arrows. In all the measurements the magnetic fields were applied along the axis.

Image of FIG. 4.

Click to view

FIG. 4.

AFM images (1 × 1 μm) from (a)-(d) 14 nm and (e)-(h) 28 nm films during the accumulative annealing processes. The surface terraces are gradually improved as the annealing temperature and duration time increases. (i) [(j)] The corresponding - curves of 14 (28) nm films.

Image of FIG. 5.

Click to view

FIG. 5.

scans and RCs measure from the (a)-(e) 14 nm films and (f)-(j) 28 nm films during the accumulative annealing processes. The dashed lines are guidance for eyes for the shift of LCMO(004) peaks. In (b)-(e) and (g)-(j) the scans of the as-grown films were inserted for comparison.

Image of FIG. 6.

Click to view

FIG. 6.

The AFM images (1 × 1 μm) measured from (a) the as-received NGO(001) substrate, (b) the bare NGO(001) substrate annealed at 780 °C for 10 h, and (c) the 14 nm LCMO/NGO(001) film annealed side by side with the bare substrate.

Image of FIG. 7.

Click to view

FIG. 7.

The sketches for lattice distortions in LCMO/NGO(001) films are shown in (a)-(d), in which the red balls (small) stand for oxygen anions, and the green and yellow balls (bigger) stand for manganese and gallium cations respectively. For clarity the A-site cations are ignored. The plane is indexed in setting, as represented by the open rectangles, solid (green) for bulk LCMO and dash (black) for NGO. (a) The structure top view of bulk LCMO with small octahedral rotation and tilting angles, and the on-site octahedral deformation is weak. (b) The structure top view of NGO substrate, in which the rigid GaO octahedra exhibit evident octahedral rotation and tilting. (c) Top view and side view for the structure of LCMO film with enhanced Q mode Jahn-Teller distortion. (d) Top view and side view for a possible structure of the LCMO film interfacial layer with enhanced in-plane octahedral tilting and breathing mode octahedral deformation. As marked by the dashed rectangles that represent the plane of NGO substrate, the anisotropic strain can be accommodated for the both structures shown in (c) and (d). (e) The zero-field - curve and (f) the isothermal - curves at 250, 200, and 100 K measured from the 5 nm film annealed at 780 °C for 5 h. In (e) the zero-field - curve of annealed 16 nm film was inserted for comparison (the was marked by the solid arrow), and the inset of (e) shows the AFM image (1 × 1 μm) of the 5 nm film after annealing. The arrows in (f) denote the cycling of (0→ 14→ 0 T).

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4804541
2013-05-01
2014-04-25

Abstract

Bulk LaCaMnO (LCMO) and NdGaO (NGO) have the same symmetry but different orthorhombic lattice distortions, yielding an anisotropic strain state in the LCMO epitaxial film grown on the NGO(001) substrate. The films are optimally doped in a ferromagnetic-metal ground state, after being annealed in oxygen atmosphere, however, they show strikingly an antiferromagnetic-insulating (AFI) transition near 250 K, leading to a phase separation state with tunable phase instability at the temperatures below. To explain this drastic strain effect, the films with various thicknesses were annealed under various annealing parameters. We demonstrate that the annealing can surprisingly improve the epitaxial quality, resulting in the films with true substrate coherency and the AFI ground state. And the close linkage between the film morphology and electronic phase evolution implies that the strain-mediated octahedral deformation and rotation could be assisted by annealing, and moreover, play a key role in controlling the properties of oxide heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4804541.html;jsessionid=3n7qrbibqa1bo.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4804541&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub>/NdGaO<sub>3</sub>(001) films
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804541
10.1063/1.4804541
SEARCH_EXPAND_ITEM