Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010);
1.P. Zubko, S. Gariglio, M. Gabay, Philippe Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Mater Phys. 2, 141 (2011);
1.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
2. J. M. Rondinelli, S. J. May, and J. W. Freeland, MRS Bulletin 37, 261 (2012);
2.J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011);
2.J. Chakhalian, A. J. Millis, and J. Rondinelli, Nat. Mater. 11, 92 (2012).
3. H. Rotella, U. Lüders, P.-E. Janolin, V. H. Dao, D. Chateigner, R. Feyerherm, E. Dudzik, and W. Prellier, Phys. Rev. B 85, 18401 (2012);
3.A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B. 83, 064101 (2011).
4. A. J. Hatt and N. A. Spaldin, Phys. Rev. B 82, 195402 (2010);
4.S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010);
4.A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
5. K. J. Choi, S. H. Baek, H. W. Jang, L. J. Belenky, M. Lyubchenko, and C.-B. Eom, Adv. Mater. 22, 759 (2010).
6. D. L. Proffit, H. W. Jang, S. Lee, C. T. Nelson, X. Q. Pan, M. S. Rzchowski, and C.-B. Eom, Appl. Phys. Lett. 93, 111912 (2008).
7. S. H. Chang, Y. J. Chang, S. Y. Jang, D. W. Jeong, C. U. Jung, Y.-J. Kim, J.-S. Chung, and T. W. Noh, Phys. Rev. B 84, 104101 (2011);
7.D. Kan and Y. Shimakawa, Cryst. Growth Des. 11, 5483 (2011).
8. Y. Ogimoto, N. Takubo, M. Nakamura, H. Tamaru, M. Izumi, and K. Miyano, Appl. Phys. Lett. 86, 112513 (2005);
8.M. Nakamura, Y. Ogimoto, H. Tamaru, M. Izumi, and K. Miyano, Appl. Phys. Lett. 86, 182504 (2005);
8.Y. Wakabayashi, D. Bizen, Y. Kubo, H. Nakao, Y. Murakami, M. Nakamura, Y. Ogimoto, K. Miyano, and H. Sawa, J. Phys. Soc. Jpn. 77, 014712 (2008).
9. A. T. Zayak, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B 77, 214410 (2008);
9.A. T. Zayak, X. Huang, J. B. Neaton, and K. M. Rabe, Phys. Rev. B 74, 094104 (2006).
10. J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B 82, 113402 (2010).
11. J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).
12. A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
13. E. Bousquet, M. Dawber, N. Stucki, C. Lichternsteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez, Nature 452, 732 (2008).
14. H. Boschker, J. Kautz, E. P. Houwman, W. Siemons, D. H. A. Blank, M. Huijben, G. Koster, A. Vailionis, and G. Rijinders, Phys. Rev. Lett. 109, 157207 (2012).
15. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79, 081405R (2009).
16. S. Y. Moon, D.-H. Kim, H. J. Chang, J. K. Choi, C.-Y. Kang, H. J. Choi, S.-H. Hong, S.-H. Baek, J.-S. Kim, and H. W. Jang, Appl. Phys. Lett. 102, 012903 (2013).
17. M. Ziese, H. C. Semmelhack, and K. H. Han, Phys. Rev. B 68, 134444 (2003);
17.L. Abad, V. Laukhin, S. Valencia, A. Gaup, W. Gudat, L. Balcells, and B. Martínez, Adv. Func. Mater 17, 3918 (2007).
18. A. Biswas, M. Rajeswari, R. C. Srivastava, Y. H. Li, T. Venkatesan, R. L. Greene, and A. J. Millis, Phys. Rev. B 61, 9665 (2000);
18.M. Ziese, H. C. Semmelhack, K. H. Han, S. P. Sena, and H. J. Blythe, J. Appl. Phys. 91, 9930 (2002);
18.M. Bibes, S. Valencia, L. Balcells, B. Martínez, J. Fontcuberta, M. Wojcik, S. Nadolski, and E. Jedryka, Phys. Rev. B 66, 134416 (2002).
19. J. Li, C. K. Ong, J. M. Liu, Q. Huang, and S. J. Wang, Appl. Phys. Lett. 76, 1051 (2000);
19.J. Sakai, N. Ito, and S. Imai, J. Appl. Phys. 99, 08Q318 (2006).
20. L. F. Kourkoutis, J. H. Song, H. Y. Hwang, and D. A. Muller, Proc. Natl. Acad. Sci. U.S.A. 107, 11682 (2010).
21. T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, J. Appl. Phys. 103, 103703 (2008).
22. S. A. Chambers, Adv. Mater. 22, 219 (2010).
23. G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank,and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).
24. J. Shin, S. V. Kalinin, A. Y. Borisevich, E. W. Plummer, and A. P. Baddorf, Appl. Phys. Lett. 91, 202901 (2007).
25. R. A. Rao, Q. Gan, and C.-B. Eom, Appl. Phys. Lett. 71, 1171 (1997).
26. S. W. Jin, G. Y. Gao, Z. Z. Yin, Z. Huang, X. Y. Zhou, and W. B. Wu, Phys. Rev. B 75, 212401 (2007).
27. M. P. Siegal, J. M. Phillips, R. B. van Dover, T. H. Tiefel, and J. H. Marshall, J. Appl. Phys. 68, 6353 (1990).
28. S. H. Seo, H. C. Kang, H. W. Jang, and D. Y. Noh, Phys. Rev. B 71, 012412 (2005);
28.P. Murugavel, J. H. Lee, K.-B. Lee, J. H. Park, J.-S. Chung, J.-G. Yoon, and T. W. Noh, J. Phys. D: Appl. Phys. 35, 3166 (2002).
29. G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 71, 1171 (2007).
30. L. Vasylechko, L. Akselrud, W. Morgenroth, U. Bismayer, A. Matkovskii, and D. Savytskii, J. Alloys Compd. 297, 46 (2000).
31. Q. Huang, A. Santoro, J. W. Lynn, R. W. Erwin, J. A. Borchers, J. L. Peng, K. Ghosh, and R. L. Greene, Phys. Rev. B 58, 2684 (1998).
32. Z. Huang, G. Y. Gao, Z. Z. Yin, X. X. Feng, Y. Z. Chen, X. R. Zhao, J. R. Sun, and W. B. Wu, J. Appl. Phys. 105, 113919 (2009);
32.F. H. Zhang, Z. Huang, G. Y. Gao, P. F. Chen, L. F. Wang, X. L. Tan, and W. B. Wu, Appl. Phys. Lett. 96, 062507 (2010).
33. L. F. Wang, Z. Huang, X. L. Tan, P. F. Chen, B. W. Zhi, G. M. Li, and W. B. Wu, Appl. Phys. Lett. 97, 242507 (2010).
34. Z. Huang, L. F. Wang, X. L. Tan, P. F. Chen, G. Y. Gao, and W. B. Wu, J. Appl. Phys. 108, 083912 (2010).
35. Z. Huang, L. F. Wang, P. F. Chen, G. Y. Gao, X. L. Tan, B. W. Zhi, X. F. Xuan, and W. B. Wu, Phys. Rev. B 86, 014410 (2012).
36. Powder diffractions standards: 87-1608 and 87-1084.
37. W. Wu, C. Israel, N. Hur, S. Park, S.-W. Cheong, and A. De Lozanne, Nat. Mater. 5, 881 (2006).
38. H. Kuwahara, Y. Moritomo, Y. Tomioka, A. Asamitsu, M. Kasai, R. Kumai, and Y. Tokura, Phys. Rev. B 56, 9386 (1997).
39. F. Sánchez, G. Herranz, I. C. Infante, J. Fontcuberta, M. V. García-Cuenca, C. Ferrater, and M. Varela, Appl. Phys. Lett. 85, 1981 (2004).
40. V. A. Vas'ko, C. A. Nordman, P. A. Kraus, V. S. Achutharaman, A. R. Ruosi, and A. M. Goldman, Appl. Phys. Lett. 68, 2571 (1996);
40.M. Izumi, Y. Konishi, T. Nishihara, S. Hayashi, M. Shinohara, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 73, 2497 (1998).
41. T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 74, 2531 (1999).
42. Z. H. Wang, O. I. Lebedev, G. Van Tendeloo, G. Cristiani, and H.-U. Habermeier, Phys. Rev. B 77, 115330 (2008).
43. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2011);
43.Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).
44. J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 94, 065501 (2005).
45. A. Vailionis, W. Siemons, and G. Koster, Appl. Phys. Lett. 93, 051909 (2008);
45.A. Vasudevarao, S. Denev, M. D. Biegalski, Y. Li, L.-Q. Chen, S. Trolier-McKinstry, D. G. Schlom, and V. Gopalan, Appl. Phys. Lett. 92, 192902 (2008).
46. R. Tamazyan and S. van Smaalen, Acta Cryst. B 63, 190 (2007).
47. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 132104 (2008).
48. M. W. Lufaso and P. M. Woodward, Acta Cryst. B 60, 10 (2004).
49. P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schiffer, and A. P. Ramirez, Phys. Rev. Lett. 75, 4488 (1995).
50. A. J. Millis, Phys. Rev. B 53, 8434 (1996);
50.K. Yamamoto, T. Kimura, T. Ishikawa, T. Katsufuji, and Y. Tokura, Phys. Rev. B 61, 14706 (2000).

Data & Media loading...


Article metrics loading...



Bulk LaCaMnO (LCMO) and NdGaO (NGO) have the same symmetry but different orthorhombic lattice distortions, yielding an anisotropic strain state in the LCMO epitaxial film grown on the NGO(001) substrate. The films are optimally doped in a ferromagnetic-metal ground state, after being annealed in oxygen atmosphere, however, they show strikingly an antiferromagnetic-insulating (AFI) transition near 250 K, leading to a phase separation state with tunable phase instability at the temperatures below. To explain this drastic strain effect, the films with various thicknesses were annealed under various annealing parameters. We demonstrate that the annealing can surprisingly improve the epitaxial quality, resulting in the films with true substrate coherency and the AFI ground state. And the close linkage between the film morphology and electronic phase evolution implies that the strain-mediated octahedral deformation and rotation could be assisted by annealing, and moreover, play a key role in controlling the properties of oxide heterostructures.


Full text loading...