1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Growth and characterization of cooperative quantum dot chains in quaternary InAsSbP material system
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4804547
1.
1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1998).
2.
2. Nano-Optoelectronics, edited by M. Grundmann (Springer, New York, 2002).
3.
3. Yu. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, Appl. Phys. Lett. 83, 987 (2003).
http://dx.doi.org/10.1063/1.1596712
4.
4. I. Stranski and L. Krastanow, Math.-Naturwiss. 146, 797 (1938).
5.
5. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, Nat. Photonics 4, 302 (2010).
http://dx.doi.org/10.1038/nphoton.2010.2
6.
6. C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005).
http://dx.doi.org/10.1109/JSTQE.2005.845616
7.
7. H. Heidemeyer, C. Müller, and O. G. Schmidt, Physica E 23, 237 (2004).
http://dx.doi.org/10.1016/j.physe.2003.10.012
8.
8. G. Schedelbeck, W. Wegscheider, M. Bichler, and G. Abstreiter, Science 278, 1792 (1997).
http://dx.doi.org/10.1126/science.278.5344.1792
9.
9. Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, Appl. Phys. Lett. 84, 1931 (2004).
http://dx.doi.org/10.1063/1.1669064
10.
10. T. V. Hakkarainen, A. Schramm, R. Ahorinta, L. Toikkanen, and M. Guina, Nanoscale Res. Lett. 5, 1892 (2010).
http://dx.doi.org/10.1007/s11671-010-9747-2
11.
11. J. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, Nano Lett. 4, 2467 (2004).
http://dx.doi.org/10.1021/nl048355u
12.
12. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129 (1996).
http://dx.doi.org/10.1116/1.588605
13.
13. B. Heidari, I. Maximov, E.-L. Sarwe, and L. Montelius, J. Vac. Sci. Technol. B 17, 2961 (1999).
http://dx.doi.org/10.1116/1.590934
14.
14. C.-C. Cheng, K. Meneou, and K. Y. Cheng, Appl. Phys. Lett. 95, 173108 (2009).
http://dx.doi.org/10.1063/1.3255015
15.
15. T. V. Hakkarainen, J. Tommila, A. Schramm, A. Tukiainen, R. Ahorinta, M. Dumitrescu, and M. Guina, Appl. Phys. Lett. 97, 173107 (2010).
http://dx.doi.org/10.1063/1.3506903
16.
16. M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Graff, J. Sudijono, L. M. Sander, and B. G. Orr, Phys. Rev. Lett. 72, 116 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.116
17.
17. A. Ballestad, B. J. Ruck, M. Adamcyk, T. Pinnington, and T. Tiedje, Phys. Rev. Lett. 86, 2377 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2377
18.
18. Z. M. Wang, L. Daweritz, P. Schutzendube, and K. H. Ploog, Phys. Rev. B 61, R2440 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R2440
19.
19. Z. M. Wang, J. L. Shultz, and G. J. Salamo, Appl. Phys. Lett. 83, 1749 (2003).
http://dx.doi.org/10.1063/1.1606891
20.
20. Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
http://dx.doi.org/10.1063/1.1760219
21.
21. J. S. Lee, M. Sugisaki, H. W. Ren, S. Sugou, and Y. Masumoto, Physica E 7, 303 (2000).
http://dx.doi.org/10.1016/S1386-9477(99)00330-6
22.
22. N. K. Dutta, R. Yen, R. L. Brown, T. M. Shen, N. A. Olsson, and D. C. Craft, Appl. Phys. Lett. 46, 19 (1985).
http://dx.doi.org/10.1063/1.95835
23.
23. A. Krier, Z. Labadi, and A. Hammiche, J. Phys. D: Appl. Phys. 32, 2587 (1999).
http://dx.doi.org/10.1088/0022-3727/32/20/301
24.
24. K. M. Gambaryan, V. M. Aroutiounian, and V. G. Harutyunyan, Appl. Phys. Lett. 101, 093103 (2012).
http://dx.doi.org/10.1063/1.4748574
25.
25. K. M. Gambaryan, V. M. Aroutiounian, T. Boeck, M. Schulze, and P. G. Soukiassian, J. Phys. D: Appl. Phys. (FTC) 41, 162004 (2008).
http://dx.doi.org/10.1088/0022-3727/41/16/162004
26.
26. K. D. Moiseev, M. P. Mikhailova, Ya. A. Parkhomenko, E. V. Gushchina, S. S. Kizhaev, E. V. Ivanov, N. A. Bert, and Yu. P. Yakovlev, Proc. of SPIE: Quantum dots, particles and nanoclusters-VI 7224, 25–28 Jan. 2009, San Jose, USA.
27.
27. K. M. Gambaryan, V. M. Aroutiounian, V. G. Harutyunyan, O. Marquardt, and P. G. Soukiassian, Appl. Phys. Lett. 100, 033104 (2012).
http://dx.doi.org/10.1063/1.3676437
28.
28. K. M. Gambaryan, Nanoscale Res. Lett. 5, 587 (2010).
http://dx.doi.org/10.1007/s11671-009-9510-8
29.
29. O. Marquardt, T. Hickel, J. Neugebauer, K. M. Gambaryan, and V. M. Aroutiounian, J. Appl. Phys. 110, 043708 (2011).
http://dx.doi.org/10.1063/1.3624621
30.
30. W. Ostwald, Analit Chemie (Leipzig, Germany, 1931).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804547
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

AFM images of the InAs(100) etched surface – (a) and InAsSbP CQDCs grown by LPE on InAs(100) substrate – (b), (S = 8 × 8 μm); (c) – height distribution of the CQDCs.

Image of FIG. 2.

Click to view

FIG. 2.

(a-d) – AFM topography images of the InAsSbP CQDCs, (e, f, g) – AFM profiles along the indicated in (b, c, d) lines, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

A schematic sketch of the InAsSbP CQDCs.

Image of FIG. 4.

Click to view

FIG. 4.

(a) – AFM topography image of the InAsSbP wire-like structures grown at contact duration of liquid phase with the substrate of 60 minutes, (b, c) – SEM images of the micrometric elongated pyramidal islands grown during two hours.

Image of FIG. 5.

Click to view

FIG. 5.

Room temperature FTIR spectra of the test sample (etched InAs(100) substrate) – a, and the InAsSbP CQDCs structure – b.

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4804547
2013-05-08
2014-04-23

Abstract

The cooperative quantum dot chains (CQDCs) are grown from In-As-Sb-P quaternary liquid phase on InAs(100) substrate with a deviation of surface orientation from (100) of about 0.3° along [010] direction. The wet chemical etching is utilized to create an additional artificial disorientation of the substrate. AFM investigations show that CQDCs mainly consist of central coupled InAsSb quantum dot (QD) sub-chains surrounded by InAsP-leaf chains. Cooperative chains have a ∼120 nm total width, over 5 μm length and directed along [010]. The separation between QDs within sub-chains is about 40 nm. The red shift of CQDCs’ absorption edge is detected.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4804547.html;jsessionid=e8co23ntn13ne.x-aip-live-02?itemId=/content/aip/journal/adva/3/5/10.1063/1.4804547&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Growth and characterization of cooperative quantum dot chains in quaternary InAsSbP material system
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804547
10.1063/1.4804547
SEARCH_EXPAND_ITEM