1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High-temperature ferromagnetism of helical carbon nanotubes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4804947
1.
1. P. O. Lehtinen, A. S. Foster, Y. C. Ma, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 93, 187202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.187202
2.
2. L. E. Hueso, J. M. Pruneda, V. Ferrari, G. Burnell, J. P. Valdés–Herrera, B. D. Simons, P. B. Littlewood, E. Artacho, A. Fert, and N. D. Mathur, Nature 445, 410 (2007).
http://dx.doi.org/10.1038/nature05507
3.
3. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
4.
4. K. H. Han, A. Talyzin, A. Dzwilewski, T. L. Makarova, R. Hohne, P. Esquinazi, D. Spemann, and L. S. Dubrovinsky, Phys. Rev. B 72, 224424 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.224424
5.
5. Y. Kopelevich, R. R. da Silva, J. H. S. Torres, and A. Penicaud, Phys. Rev. B 68, 092408 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.092408
6.
6. A. V. Rode, E. G. Gamaly, A. G. Christy, J. G. Fitz Gerald, S. T. Hyde, R. G. Elliman, B. Luther-Davies, A. I. Veinger, J. Androulakis, and J. Giapintzakis, Phys. Rev. B 70, 054407 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.054407
7.
7. S. Ma, J. H. Xia, Vadali V. S. S. Srikanth, X. Sun, T. Staedler, X. Jiang, F. Yang, and Z. D. Zhang, Appl. Phys. Lett. 95, 263105 (2009).
http://dx.doi.org/10.1063/1.3272940
8.
8. Y. Shibayama, H. Sato, and T. Enoki, Phys. Rev. Lett. 84, 1744 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1744
9.
9. N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, and D. Tomanek, Phys. Rev. Lett. 91, 237204 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.237204
10.
10. R. Caudillo, X. Gao, R. Escudero, M. Jose-Yacaman, and J. B. Goodenough, Phys. Rev. B 74, 214418 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.214418
11.
11. N. J. Tang, W. Zhong, C. Au, A. Gedanken, Y. Yang, and Y. W. Du, Adv. Funct. Mater. 17, 1542 (2007).
http://dx.doi.org/10.1002/adfm.200600767
12.
12. N. J. Tang, J. F. Wen, Y. Zhang, F. X. Liu, K. J. Lin, and Y. W. Du, ACS Nano 4, 241 (2010).
http://dx.doi.org/10.1021/nn901425r
13.
13. Y. Qin, Z. K. Zhang, Z. Cui, and L. Cui, Carbon 41, 3072 (2003).
http://dx.doi.org/10.1016/S0008-6223(03)00435-4
14.
14. G. van der Laan, C. Westra, C. Haas, and G. A. Sawatzky, Phys. Rev. B 23, 4369 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.4369
15.
15. J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, and G. A. Sawatzky, Phys. Rev. B 38, 11322 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.11322
16.
16. J. Y. Park, Y. S. Jung, J. Cho, and W. K. Choi, Appl. Surf. Sci. 252, 5877 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.08.019
17.
17. V. N. Narozhnyi, K. H. Muller, D. Eckert, A. Teresiak, L. Dunsch, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Physica B 329-333, 1217 (2003).
http://dx.doi.org/10.1016/S0921-4526(02)02141-5
18.
18. A. L. Friedman, H. Chun, Y. J. Jung, D. Heiman, E. R. Glaser, and L. Menon, Phys. Rev. B 81, 115461 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115461
19.
19. A. P. Ramirez, R. C. Haddon, O. Zhou, R. M. Fleming, J. Zhang, S. M. McClure, and R. E. Smalley, Science 265, 84 (1994).
http://dx.doi.org/10.1126/science.265.5168.84
20.
20. S. Ihara, S. Itoh, and J. Kitakami, Phys. Rev. B 48, 5643 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.5643
21.
21. A. N. Andriotis, R. M. Sheetz, E. Richter, and M. Menon, Europhys. Lett. 72, 658 (2005).
http://dx.doi.org/10.1209/epl/i2005-10276-x
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804947
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Microstructure of the as-prepared sample. (a) FE-SEM image. (b) TEM image; the white arrows indicate the nozzles of the HCNTs.

Image of FIG. 2.

Click to view

FIG. 2.

The XPS spectrum of the in-depth surface of the as-prepared sample. Inset shows the LMM-2 auger transition in XPS spectrum.

Image of FIG. 3.

Click to view

FIG. 3.

Magnetic properties of the as-prepared sample: (a) typical mass magnetization curves measured at 5 and 300 K. Inset is a part of the magnetization curves. (b) Magnetic moment as a function of temperature ranging from 2 to 300 K with an applied field of 2 T. Inset is the curve measured under 1000 Oe with temperature ranging from 300 to 750 K. The red solid line is the fitting result of Eq. (1) . (c) Ferromagnetic mass magnetization.

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4804947
2013-05-08
2014-04-18

Abstract

We report the experimental results on the magnetism of curvature-induced helical carbon nanotubes (HCNTs). It is demonstrated that without any magnetic impurities in the sample, the as-prepared HCNTs show clear ferromagnetism with a Curie point as high as 970 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4804947.html;jsessionid=1w5ojsdht47h6.x-aip-live-01?itemId=/content/aip/journal/adva/3/5/10.1063/1.4804947&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-temperature ferromagnetism of helical carbon nanotubes
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4804947
10.1063/1.4804947
SEARCH_EXPAND_ITEM