1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4807655
1.
1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.R3429
2.
2. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 87, 123602 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.123602
3.
3. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, Phys. Rev. Lett. 94, 063601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.063601
4.
4. R. Meyers, K. S. Deacon, and Y. H. Shih, Phys. Rev. A. 77, 041801R (2008).
http://dx.doi.org/10.1103/PhysRevA.77.041801
5.
5. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, Opt. Lett. 30, 2354 (2005).
http://dx.doi.org/10.1364/OL.30.002354
6.
6. X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, Opt. Lett. 34, 695 (2009).
http://dx.doi.org/10.1364/OL.34.000695
7.
7. R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett. 89, 113601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.113601
8.
8. J. Cheng and S. S. Han, Phys. Rev. Lett. 92, 093903 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.093903
9.
9. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.093602
10.
10. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. A. 70, 013802 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.013802
11.
11. Y. J. Cai and S. Y. Zhu, Phys. Rev. E 71, 056607 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.056607
12.
12. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, Appl. Phys. Lett. 92, 201102 (2008).
http://dx.doi.org/10.1063/1.2919719
13.
13. I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, Phys. Rev. A 77, 053801 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.053801
14.
14. Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, Phys. Rev. A 79, 053844 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053844
15.
15. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, Opt. Lett. 34, 3343 (2009).
http://dx.doi.org/10.1364/OL.34.003343
16.
16. X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, Opt. Lett. 35, 1166 (2010).
http://dx.doi.org/10.1364/OL.35.001166
17.
17. L. Basano and P. Ottonello, Appl. Opt. 46, 6291 (2007).
http://dx.doi.org/10.1364/AO.46.006291
18.
18. K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, Chin. Phys. Lett. 29, 074216 (2012).
http://dx.doi.org/10.1088/0256-307X/29/7/074216
19.
19. W. L. Gong and S. S. Han, Phys. Lett. A 374, 1005 (2010).
http://dx.doi.org/10.1016/j.physleta.2009.12.030
20.
20. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, Phys. Rev. Lett. 104, 253603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.253603
21.
21. J. H. Shapiro, Phys. Rev. A 78, 061802R (2008).
http://dx.doi.org/10.1103/PhysRevA.78.061802
22.
22. Y. Bromberg, O. Katz, and Y. Silberberg, Phys. Rev. A 79, 053840 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053840
23.
23. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, Opt. Lett. 35, 2391 (2010).
http://dx.doi.org/10.1364/OL.35.002391
24.
24. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, IEEE Signal Processing Magazine 25, 83 (2008).
http://dx.doi.org/10.1109/MSP.2007.914730
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807655
Loading
/content/aip/journal/adva/3/5/10.1063/1.4807655
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4807655
2013-05-17
2014-10-30

Abstract

The image quality in ghost imaging is vital in practical applications. Through theoretical analysis, we find that for thermal light the average intensity as well as the fluctuations of an arbitrary incident field can greatly influence the image quality. Based on this, we suggest an easily realizable scheme to improve the visibility by generating speckles of non-Gaussian intensity distributions with a spatial light modulator. Numerical simulation demonstrates that this method can significantly improve the visibility, and the effect on the imaging resolution is also discussed. This method may thus be helpful in promoting the implementation of ghost imaging in real applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4807655.html;jsessionid=7gp20jr7mdcbh.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4807655&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807655
10.1063/1.4807655
SEARCH_EXPAND_ITEM