1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4807655
1.
1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.R3429
2.
2. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 87, 123602 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.123602
3.
3. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, Phys. Rev. Lett. 94, 063601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.063601
4.
4. R. Meyers, K. S. Deacon, and Y. H. Shih, Phys. Rev. A. 77, 041801R (2008).
http://dx.doi.org/10.1103/PhysRevA.77.041801
5.
5. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, Opt. Lett. 30, 2354 (2005).
http://dx.doi.org/10.1364/OL.30.002354
6.
6. X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, Opt. Lett. 34, 695 (2009).
http://dx.doi.org/10.1364/OL.34.000695
7.
7. R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett. 89, 113601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.113601
8.
8. J. Cheng and S. S. Han, Phys. Rev. Lett. 92, 093903 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.093903
9.
9. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.093602
10.
10. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. A. 70, 013802 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.013802
11.
11. Y. J. Cai and S. Y. Zhu, Phys. Rev. E 71, 056607 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.056607
12.
12. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, Appl. Phys. Lett. 92, 201102 (2008).
http://dx.doi.org/10.1063/1.2919719
13.
13. I. N. Agafonov, M. V. Chekhova, T. S. Iskhakov, and A. N. Penin, Phys. Rev. A 77, 053801 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.053801
14.
14. Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, Phys. Rev. A 79, 053844 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053844
15.
15. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, Opt. Lett. 34, 3343 (2009).
http://dx.doi.org/10.1364/OL.34.003343
16.
16. X. H. Chen, I. N. Agafonov, K. H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L. A. Wu, Opt. Lett. 35, 1166 (2010).
http://dx.doi.org/10.1364/OL.35.001166
17.
17. L. Basano and P. Ottonello, Appl. Opt. 46, 6291 (2007).
http://dx.doi.org/10.1364/AO.46.006291
18.
18. K. H. Luo, B. Q. Huang, W. M. Zheng, and L. A. Wu, Chin. Phys. Lett. 29, 074216 (2012).
http://dx.doi.org/10.1088/0256-307X/29/7/074216
19.
19. W. L. Gong and S. S. Han, Phys. Lett. A 374, 1005 (2010).
http://dx.doi.org/10.1016/j.physleta.2009.12.030
20.
20. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, Phys. Rev. Lett. 104, 253603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.253603
21.
21. J. H. Shapiro, Phys. Rev. A 78, 061802R (2008).
http://dx.doi.org/10.1103/PhysRevA.78.061802
22.
22. Y. Bromberg, O. Katz, and Y. Silberberg, Phys. Rev. A 79, 053840 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053840
23.
23. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, Opt. Lett. 35, 2391 (2010).
http://dx.doi.org/10.1364/OL.35.002391
24.
24. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, IEEE Signal Processing Magazine 25, 83 (2008).
http://dx.doi.org/10.1109/MSP.2007.914730
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807655
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of pseudothermal GI: BS, beamsplitter; D, bucket detector; D, spatially resolving detector; Obj, object. The object and D are the same distance away from the source. (b) Schematic of GI with speckles generated by SLM: L, lens; Obj, object; D, bucket detector.

Image of FIG. 2.

Click to view

FIG. 2.

Visibility of GI as a function of ( ) for different values of / . Circles, squares and crosses are the numerical simulation results derived from Eq. (8a) ; dashed curves are plotted from Eq. (8b) . In usual GI experiments, ( ) = 1.

Image of FIG. 3.

Click to view

FIG. 3.

Row (a) Intensity fluctuations of speckles with different statistical distributions. The values of ( ) are: (a1) 1, (a2) 5, (a3) 9.8. Row (b) Ghost images using the corresponding speckles in (a). The visibilities of the images are: (b1) 0.0241, (b2) 0.1078, (b3) 0.1877.

Image of FIG. 4.

Click to view

FIG. 4.

Ghost imaging of a panda face using speckles with different fluctuation statistics. (a) ( ) = 1, (b) ( ) = 5, (c) ( ) = 9.8. The average of 4 × 10 measurements is used. The gray scale of each image has been normalized with respect to the minimum and maximum values of Fig. 3(c) .

Image of FIG. 5.

Click to view

FIG. 5.

Normalized second-order self-correlation function using speckles with different fluctuation statistics. Curve (a) ( ) = 1, FWHM = 66.6 μm; (b) ( ) = 5, FWHM = 62.1 μm; (c) ( ) = 9.8, FWHM = 59.5 μm. The curves are scaled such that the maximum peak value of (a) is 2.

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4807655
2013-05-17
2014-04-19

Abstract

The image quality in ghost imaging is vital in practical applications. Through theoretical analysis, we find that for thermal light the average intensity as well as the fluctuations of an arbitrary incident field can greatly influence the image quality. Based on this, we suggest an easily realizable scheme to improve the visibility by generating speckles of non-Gaussian intensity distributions with a spatial light modulator. Numerical simulation demonstrates that this method can significantly improve the visibility, and the effect on the imaging resolution is also discussed. This method may thus be helpful in promoting the implementation of ghost imaging in real applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4807655.html;jsessionid=90qgll3npqs6t.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4807655&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807655
10.1063/1.4807655
SEARCH_EXPAND_ITEM