1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4807660
1.
1. B. C. Shekar, J. Lee, and S.-W. Rhee, Korean J. Chem. Eng. 21, 267 (2004).
http://dx.doi.org/10.1007/BF02705409
2.
2. A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz, and J. Rogers, Appl. Phys. Lett. 73, 142 (1998).
http://dx.doi.org/10.1063/1.121736
3.
3. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).
http://dx.doi.org/10.1063/1.1579554
4.
4. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).
http://dx.doi.org/10.1063/1.2178213
5.
5. Y. Li, C. Liu, A. Kumatani, P. Darmawan, T. Minari, and K. Tsukagoshi, AIP Advances 1(2), 022149 (2011).
http://dx.doi.org/10.1063/1.3608793
6.
6. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Chem. Rev. 112, 2208 (2012).
http://dx.doi.org/10.1021/cr100380z
7.
7. J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf, Adv. Funct. Mater. 13, 119 (2003).
http://dx.doi.org/10.1002/adfm.200390030
8.
8. W. Shi, J. Yu, W. Huang, X. Yu, and Y. Zheng, Appl. Phys. Lett. 102, 111607 (2013).
http://dx.doi.org/10.1063/1.4798368
9.
9. B. Kam, X. Li, C. Cristoferi, E. C. P. Smits, A. Mityashin, S. Schols, J. Genoe, G. Gelinck, and P. Heremans, Appl. Phys. Lett. 101, 033304 (2012)
http://dx.doi.org/10.1063/1.4737176
10.
10. S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater. 25, 1822 (2013).
http://dx.doi.org/10.1002/adma.201202790
11.
11. J. Yu, X. Yu, L. Zhang, and H. Zeng, Sens. Actuat. B-Chem. 173, 133 (2012).
http://dx.doi.org/10.1016/j.snb.2012.06.060
12.
12. R. P. Ortiz, A. Facchetti, and T. J. Marks, Chem. Rev. 110, 205 (2010).
http://dx.doi.org/10.1021/cr9001275
13.
13. B. Mukherjee and M. Mukherjee, Organ. Electron. 10, 1282 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.07.006
14.
14. T. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, and R. Schwödiauer, Appl. Phys. Lett. 85, 5409 (2004).
http://dx.doi.org/10.1063/1.1828236
15.
15. Y.-C. Chen, Y.-K. Su, H.-C. Yu, C.-Y. Huang, and T.-S. Huang, Appl. Phys. Lett. 99, 143308 (2011).
http://dx.doi.org/10.1063/1.3647976
16.
16. T. B. Singh, N. Marjanović, P. Stadler, M. Auinger, and G. J. Matt, J. Appl. Phys. 97, 083714 (2005).
http://dx.doi.org/10.1063/1.1895466
17.
17. M. Egginger, M. I.-Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S. Bauer, and N. S. Sariciftci, Adv. Mater. 20, 1018 (2008).
http://dx.doi.org/10.1002/adma.200701479
18.
18. E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, and A. Bonfiglio, Organ. Electron. 12, 477 (2011).
http://dx.doi.org/10.1016/j.orgel.2010.12.014
19.
19. Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett. 88, 072101 (2006).
http://dx.doi.org/10.1063/1.2173633
20.
20. Y. Sun, Y. Liu, Y. Ma, C. Di, Y. Wang, W. Wu, G. Yu, W. Hu, and D. Zhu, Appl. Phys. Lett. 88, 242113 (2006).
http://dx.doi.org/10.1063/1.2209213
21.
21. C. A. Lee, D. W. Park, S. H. Jin, H. Park, J. D. Lee, and B.-G. Park, Appl. Phys. Lett. 88, 252102 (2006).
http://dx.doi.org/10.1063/1.2213969
22.
22. W. Wang, D. Ma, S. Pan, and Y. Yang, Appl. Phys. Lett. 101, 033303 (2012).
http://dx.doi.org/10.1063/1.4737173
23.
23. S. H. Jin, J. S. Yu, C. A. Lee, J. W. Kim, B.-G. Park, and J. D. Lee, J. Korean Phys. Soc. 44, 181 (2004).
24.
24. X. Yu, J. Yu, W. Huang, L. Zhang, and H. Zeng, AIP Advances 2, 022113 (2012).
http://dx.doi.org/10.1063/1.4707164
25.
25. M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, Synth. Met. 137, 967 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00958-X
26.
26. W. Huang, J. Yu, X. Yu, Y. Li, and H. Zeng, Thin Solid Films 520, 6677 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.06.084
27.
27. K. Lakshminarayana, Y. Dasaradhudu, V. V. R. N. Rao, Mater. Lett. 21, 425 (1994).
http://dx.doi.org/10.1016/0167-577X(94)90253-4
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807660
Loading
/content/aip/journal/adva/3/5/10.1063/1.4807660
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4807660
2013-05-17
2014-07-13

Abstract

Hysteresis mechanism of pentacene organic field-effect transistors (OFETs) with polyvinyl alcohol (PVA) and/or polymethyl methacrylate (PMMA) dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ∼ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4807660.html;jsessionid=34lx3hnluu4u.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4807660&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807660
10.1063/1.4807660
SEARCH_EXPAND_ITEM