1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4807670
1.
1. E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A 253, 358 (1959).
http://dx.doi.org/10.1098/rspa.1959.0200
2.
2. A. Boivin and E. Wolf, “Electromagnetic Field in the Neighborhood of the Focus of a Coherent Beam,” Phys. Rev. 138, B1561 (1965).
http://dx.doi.org/10.1103/PhysRev.138.B1561
3.
3. E. Ronzitti, G. Vicidomini, V. Caorsi, and A. Diaspro, “Annular pupil filter under shot-noise condition for linear and non linear microscopy,” Optics Exp. 17, 6867 (2009).
http://dx.doi.org/10.1364/OE.17.006867
4.
4. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Optics Exp. 20, 7362 (2012).
http://dx.doi.org/10.1364/OE.20.007362
5.
5. C. J. R. Sheppard and P. Torok, “An electromagnetic theory of imaging in fluorescence microscopy, and imaging in polarization fluorescence microscopy,” Bioimaging 5, 205 (1997).
http://dx.doi.org/10.1002/1361-6374(199712)5:4<205::AID-BIO4>3.3.CO;2-V
6.
6. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nature Photonics 2, 501 (2008).
http://dx.doi.org/10.1038/nphoton.2008.127
7.
7. A. Gasecka, P. Tauc, A. Lewit-Bentley, and S. Brasselet, “Investigation of Molecular and Protein Crystals by Three Photon Polarization Resolved Microscopy,” Phys. Rev. Lett. 108, 263901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.263901
8.
8. S. Y. Chen and W. V. Meer, “Theory of two-photon induced fluorescence anisotropy decay in membranes,” Biophys. Jl. 64, 1567 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81526-1
9.
9. M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” Jl. Appl. Phys. 84, 4033 (1998).
http://dx.doi.org/10.1063/1.368616
10.
10. P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92, 103902 (2008).
http://dx.doi.org/10.1063/1.2888177
11.
11. C. Cremer and T. Cremer, “Considerations on a Laser-Scanning-Microscope with high resolution and depth of field,” Microsc. Acta 81, 31 (1978).
12.
12. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316, 1153 (2007).
http://dx.doi.org/10.1126/science.1137395
13.
13. H. T. M. Van der Voort, G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” Jl. Mocros. 158, 43 (1990).
http://dx.doi.org/10.1111/j.1365-2818.1990.tb02975.x
14.
14. P. J. Lu, F. Giavazzi, T. E. Angelini, E. Zaccarelli, F. Jargstorff, A. B. Schofield, J. N. Wilking, M. B. Romanowsky, D. A. Weitz, and R. Cerbino, “Characterizing Concentrated, Multiply Scattering, and Actively Driven Fluorescent Systems with Confocal Differential Dynamic Microscopy,” Phys. Rev. Lett. 108, 218103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.218103
15.
15. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-Resolution Confocal Microscopy by Saturated Excitation of Fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.228105
16.
16. G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” Jl. Microsc. 117, 219 (1979).
http://dx.doi.org/10.1111/j.1365-2818.1979.tb01178.x
17.
17. C. J. R. Sheppard and A. Choudhury, “Imaging in the scanning microscope,” Optica 24, 1051 (1977).
http://dx.doi.org/10.1080/713819421
18.
18. P. P. Mondal, G. Vicidomini, and A. Diaspro, “Markov random field aided Bayesian approach for image reconstruction in confocal microscopy,” Jl. Appl. Phys. 102, 044701 (2007).
http://dx.doi.org/10.1063/1.2770961
19.
19. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73 (1990).
http://dx.doi.org/10.1126/science.2321027
20.
20. P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Comm. 281, 1855 (2008).
http://dx.doi.org/10.1016/j.optcom.2007.09.067
21.
21. A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMed. Engg. 5, 36 (2006).
22.
22. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the Diffraction Barrier in Fluorescence Microscopy by Optical Shelving,” Phys. Rev. Lett. 98, 218103 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.218103
23.
23. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E 64, 066613 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.066613
24.
24. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nature Meth. 8, 571 (2011).
http://dx.doi.org/10.1038/nmeth.1624
25.
25. C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer Axial Resolution by Three-Dimensional Supercritical Angle Fluorescence Microscopy,” Phys. Rev. Lett. 105, 108103 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.108103
26.
26. P. P. Mondal and A. Diaspro, “Simultaneous multilayer scanning and detection for multiphoton fluorescence microscopy,” Sci. Rep. (Nature Publishing) 1, 149 (2011).
27.
27. P. P. Mondal, “Multiple excitation nano-spot generation and confocal detection for far-field microscopy,” Nanoscale 2, 381 (2010).
http://dx.doi.org/10.1039/b9nr00348g
28.
28. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens,” Jl. Micros. 170, 229 (1993).
http://dx.doi.org/10.1111/j.1365-2818.1993.tb03346.x
29.
29. C. J. Engelbrecht and E. H. Stelzer, “Resolution enhancement in a light-sheet-based microscope (SPIM),” Opt. Lett. 31, 1477 (2006).
http://dx.doi.org/10.1364/OL.31.001477
30.
30. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322, 1065 (2008).
http://dx.doi.org/10.1126/science.1162493
31.
31. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Meth. 9, 730 (2012).
http://dx.doi.org/10.1038/nmeth.2064
32.
32. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963 (2009).
http://dx.doi.org/10.1242/dev.022426
33.
33. F. C. Zanacchi, Z. Lavagnino, M. P. Donnorso, A. D. Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nature Methods 8, 10471049 (2011).
http://dx.doi.org/10.1038/nmeth.1744
34.
34. H. T. M. Van-der Voort and G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” Jl. Micros. 158, 43 (1990).
http://dx.doi.org/10.1111/j.1365-2818.1990.tb02975.x
35.
35. T. D. Visser and S. H. Wiersma, “Electromagnetic description of image formation in confocal fluorescence microscopy,” Jl. Opt. Soc. Am. A 11, 599 (1994).
http://dx.doi.org/10.1364/JOSAA.11.000599
36.
36. M. J. Nasse, J. C. Woehl, and S. Huant, “High-resolution mapping of the three-dimensional point spread function in the near-focus region of a confocal microscope,” Appl. Phys. Lett. 90, 031106 (2007).
http://dx.doi.org/10.1063/1.2431764
37.
37. P. D. Higdon, P. Torok, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes,” Jl. Micros. 193, 127 (1999).
http://dx.doi.org/10.1046/j.1365-2818.1999.00448.x
38.
38. E. Abbe, “Note on the proper definition of the amplifying power of a lens or a lens system,” J. Roy. Microsc. Soc. 4, 348351 (1884).
http://dx.doi.org/10.1111/j.1365-2818.1884.tb01110.x
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807670
Loading
/content/aip/journal/adva/3/5/10.1063/1.4807670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4807670
2013-05-17
2014-07-31

Abstract

We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of −, − and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4807670.html;jsessionid=9t72qicserpcg.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4807670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Determination of electric field at and near the focus of a cylindrical lens for applications in fluorescence microscopy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4807670
10.1063/1.4807670
SEARCH_EXPAND_ITEM