1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Imaging Fukushima Daiichi reactors with muons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/5/10.1063/1.4808210
1.
1. G. Brumfiel and D. Cyranoski, Nature 471, 273 (2011).
http://dx.doi.org/10.1038/471273a
2.
2. T. N. Srinivasan and T. S. Gopi Rethinaraj, Energy Policy 52, 726 (2013).
http://dx.doi.org/10.1016/j.enpol.2012.10.036
3.
3. R. Stone, Science 25, 1507 (2011).
http://dx.doi.org/10.1126/science.331.6024.1507
4.
4. P. C. Burns, R. C. Ewing, and A. Navrotsky, Science 335, 1184 (2012).
http://dx.doi.org/10.1126/science.1211285
5.
5. J. S. Walker, Three Mile Island: a nuclear crisis in historical perspective (Univ. of California Press, 2004).
6.
6. J. Beringer et al., Phys. Rev. D 86, 010001 (2012).
http://dx.doi.org/10.1103/PhysRevD.86.010001
7.
7. E. P. George, Commonwealth Engineer, 455 (July 1, 1955).
8.
8. L. W. Alvarez et al., Science 167, 832, (1970).
http://dx.doi.org/10.1126/science.167.3919.832
9.
9. S. Minato, Mater. Eval. 46, 1468 (1988).
10.
10. K. Nagamine, M. Iwasaki, K. Shimomura, and K. Ishida, Nucl. Instr. and Meth. A 356, 585 (1995).
http://dx.doi.org/10.1016/0168-9002(94)01169-9
11.
11. H. K. M. Tanaka, K. Nagamine, S. N. Nakamura, and K. Ishida, Nucl. Instr. and Meth. A 555, 164 (2005).
http://dx.doi.org/10.1016/j.nima.2005.08.099
12.
12. J. Marteau et al., Nucl. Instr. and Meth. A 695, 23 (2012).
http://dx.doi.org/10.1016/j.nima.2011.11.061
13.
13. Felix Fehr, J. Phys. Conf. Ser. 375, 052019, (2012).
http://dx.doi.org/10.1088/1742-6596/375/1/052019
14.
14. K. Nagamine et al., Proc. Jpn. Acad. B 81, 257 (2005).
http://dx.doi.org/10.2183/pjab.81.257
15.
15. G. G. Barnaföldi et al., Nucl. Instr. and Meth. A 689, 60 (2012).
http://dx.doi.org/10.1016/j.nima.2012.06.015
16.
16. N. Lesparre et al., Geophys. J. Int. 183, 1348 (2010).
http://dx.doi.org/10.1111/j.1365-246X.2010.04790.x
17.
17. L. Malmqvist, G. Jösson, K. Kristiansson, and L. Jacobsson, Geophysics 44, 1549 (1979).
http://dx.doi.org/10.1190/1.1441026
18.
18. K. N. Borozdin et al., Nature 422, 277 (2003).
http://dx.doi.org/10.1038/422277a
19.
19. W. C. Priedhorsky et al., Rev. of Sci. Instr. 74, 4294 (2003).
http://dx.doi.org/10.1063/1.1606536
20.
20. K. N. Borozdin et al., Nucl. Sci. Symp. Conf. Rec. 2003 IEEE, Vol. 2, 1061.
21.
21. G. E. Hogan et al., AIP Conf. Proc. 698, 755 (2004).
http://dx.doi.org/10.1063/1.1664345
22.
22. S. Pesente et al., Nucl. Instr. and Meth. A 604, 738 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.017
23.
23. V. Anghel et al., Nucl. Sci. Symp. and Med. Imag. Conf. 2011 IEEE, 959.
24.
24. A. A. Borisov et al., Instr. and Exp. Tech. 55, 151 (2012).
http://dx.doi.org/10.1134/S0020441212010010
25.
25. H. A. Bethe, Phys. Rev. 89, 1256 (1953).
http://dx.doi.org/10.1103/PhysRev.89.1256
26.
26. G. R. Lynch and O. I. Dahl, Nucl. Instrum. Methods B 58, 6 (1991).
http://dx.doi.org/10.1016/0168-583X(91)95671-Y
27.
27. L. J. Schultz et al., Nucl. Instr. and Meth. A 519, 687 (2004).
http://dx.doi.org/10.1016/j.nima.2003.11.035
28.
28. C. J. Benton, N. D. Smith, S. J. Quillin, and C. A. Steer, Nucl. Instr. and Meth. A 693, 154 (2012).
http://dx.doi.org/10.1016/j.nima.2012.07.008
29.
29. L. J. Schultz et al., IEEE Transactions on Image Processing 16, 1985 (2007).
http://dx.doi.org/10.1109/TIP.2007.901239
30.
30. G. Wang, L. J. Schultz, and J. Qi, IEEE Transactions on Image Processing 18, 1080 (2009).
http://dx.doi.org/10.1109/TIP.2009.2014423
31.
31. C. L. Morris et al., Science & Glorbal Security 16, 37 (2008).
http://dx.doi.org/10.1080/08929880802335758
32.
32.Nuclear detection system deployed at Freeport,” World Cargo News (August 10, 2012).
33.
33. G. Jonkmans, V. N. P. Anghel, C. Jewett, and M. Thompson, Ann. Nucl. Energy 53, 267 (2013).
http://dx.doi.org/10.1016/j.anucene.2012.09.011
34.
34. International Atomic Energy Agency, IAEA Technical Report Series 392, (1998).
35.
35. D. E. Groom, N. V. Mokhov, and S. I. Striganov, At. Nucl. Data Table 78, 183 (2001).
http://dx.doi.org/10.1006/adnd.2001.0861
36.
36. US Department of Energy, Integrated Data Base Report 1996, DOE/RW-0006-Rev.13, 18.
37.
37. C. L. Morris et al., AIP Advances 2, 042128 (2012).
http://dx.doi.org/10.1063/1.4766179
38.
38. K. Borozdin et al., Phys. Rev. Lett. 109, 152501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.152501
39.
39. Z. Wang et al., Nucl. Instr. and Meth. A 605, 430 (2009).
http://dx.doi.org/10.1016/j.nima.2009.03.251
40.
40. Z. Wang et al., Nucl. Instr. and Meth. A 703, 91 (2013).
http://dx.doi.org/10.1016/j.nima.2012.11.019
41.
41. J. A. Green et al., IEEE Nucl. Sci. Symp. Conf. Rec. 2006 IEEE, 285.
42.
42. R. Rios et al., Nucl. Instr. and Meth. A 637, 105 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.098
43.
43. J. Kempa and I. M. Brancus, Nucl. Phys. B (Proc. Suppl.) 122, 279 (2003).
http://dx.doi.org/10.1016/S0920-5632(03)80398-5
44.
44. A. Tang, G. Horton-Smith, V. A. Kudryavtsev, and A. Tonazzo, Phys. Rev. D 74, 053007 (2006).
http://dx.doi.org/10.1103/PhysRevD.74.053007
45.
45. A. Shimizu, T. Onda, and Y. Sakamoto, J. Nucl. Sci. and Tech. 41, 413 (2004).
http://dx.doi.org/10.1080/18811248.2004.9715503
46.
46. S. Agostinelli et al., Nucl. Instr. and Meth. A 506, 250 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
47.
47. H. Jokisch et al., Phys. Rev. D 19, 1368 (1979).
http://dx.doi.org/10.1103/PhysRevD.19.1368
48.
48. D. W. Akers, S. M. Jensen, and B. K. Schuetz, U.S. Nuclear Regulatory Commission, NUREG/CR-6195 (1994).
49.
49. U. Schneider and E. Pedroni, Med. Phys. 21, 1657 (1994).
http://dx.doi.org/10.1118/1.597212
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4808210
Loading
/content/aip/journal/adva/3/5/10.1063/1.4808210
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/5/10.1063/1.4808210
2013-05-24
2014-08-23

Abstract

A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/5/1.4808210.html;jsessionid=19k9vjnfkv50y.x-aip-live-06?itemId=/content/aip/journal/adva/3/5/10.1063/1.4808210&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Imaging Fukushima Daiichi reactors with muons
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/5/10.1063/1.4808210
10.1063/1.4808210
SEARCH_EXPAND_ITEM