Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/6/10.1063/1.4811168
1.
1. B. Li, G. Li, Q. Yin, Z. Zhu, A. Ding, and W. Cao, J. Phys. D: Appl. Phys. 38, 1107 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/001
2.
2. T. Granzow, E. Suvaci, H. Kungl, and M. J. Hoffmann, Appl. Phys. Lett. 89, 262908 (2006).
http://dx.doi.org/10.1063/1.2425035
3.
3. M. Jiang, X. Li, J. Zhu, X. Zhu, W. Shi, L. Li, D. Xiao, and J. Zhu, Curr. Appl. Phys. 10, 526 (2010).
http://dx.doi.org/10.1016/j.cap.2009.07.012
4.
4. X. Ren, Nat. Mater. 3, 91 (2004).
http://dx.doi.org/10.1038/nmat1051
5.
5. L. X. Zhang, W. Chen, and X. Ren, Appl. Phys. Lett. 85, 5658 (2004).
http://dx.doi.org/10.1063/1.1829394
6.
6. Z. Y. Feng and X. Ren, Appl. Phys. Lett. 91, 032904 (2007).
http://dx.doi.org/10.1063/1.2756355
7.
7. D. M. Lin, K. W. Kwok, and H. L. W. Chan, Appl. Phys. Lett. 90, 232903 (2007).
http://dx.doi.org/10.1063/1.2746087
8.
8. G. L. Yuan, Y. Yang, and S. W. Or, Appl. Phys. Lett. 91, 122907 (2007).
http://dx.doi.org/10.1063/1.2786013
9.
9. S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, Appl. Phys. Lett. 92, 182905 (2008).
http://dx.doi.org/10.1063/1.2920767
10.
10. Z. Y. Feng and X. Ren, Phys. Rev. B 77, 134115 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.134115
11.
11. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1979).
12.
12. C. Klingsberg and R. Roy, J. Am. Ceram. Soc. 43, 620 (1960).
http://dx.doi.org/10.1111/j.1151-2916.1960.tb13630.x
13.
13. P. V. Lambeck and G. H. Jonker, J. Phys. Chem. Solids 47, 453 (1986).
http://dx.doi.org/10.1016/0022-3697(86)90042-9
14.
14. X. Ren and K. Otsuka, Phys. Rev. Lett. 85, 1016 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1016
15.
15. C. Kittel, Phys. Rev. 82, 729 (1951).
http://dx.doi.org/10.1103/PhysRev.82.729
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811168
Loading
/content/aip/journal/adva/3/6/10.1063/1.4811168
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4811168
2013-06-07
2016-08-27

Abstract

Aging can significantly modify the dielectric, piezoelectric, and ferroelectric performance of ferroelectrics. However, little attention has been paid to the aging effect during ferroelectric-ferroelectric phase transitions that is essentially correlated with real applications. In this letter, the authors report the aging effect evolution between two ferroelectric phases in an acceptor-doped piezoceramics. The results show that aging-induced double hysteresis loops were exhibited in different ferroelectric phases, but disappeared during ferroelectric-ferroelectric phase transitions, suggesting the mechanism that the intrinsic restoring force for the reversible switching of domains caused by the alignment of defect dipoles was weakened due to ferroelectric dipole reorientation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4811168.html;jsessionid=y50j9ATMdWuzKm_Qdk8KoQ6o.x-aip-live-03?itemId=/content/aip/journal/adva/3/6/10.1063/1.4811168&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/6/10.1063/1.4811168&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/6/10.1063/1.4811168'
Right1,Right2,Right3,