1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Brush-like SnO2/ZnO hierarchical nanostructure: Synthesis, characterization and application in UV photoresponse
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4811174
1.
1. M. S. Gudlksen, L. J. Lauhon, J. F. Wang, D. V. Smith, and C. M. Lieber, Nature 415, 617 (2002).
http://dx.doi.org/10.1038/415617a
2.
2. L. Guo, Y. L. Ji, H. B. Xu, P. Simon, and Z. Y. Wu, J. Am. Chem. Soc. 124, 1486414865 (2002).
http://dx.doi.org/10.1021/ja027947g
3.
3. S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, J. Am. Chem. Soc. 15, 32943299 (2003).
http://dx.doi.org/10.1021/cm020465j
4.
4. Z. R. Dai, Z. W. Pan, and Z. L. Wang, J. Am. Chem. Soc. 124, 86738680 (2002).
http://dx.doi.org/10.1021/ja026262d
5.
5. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan, Nano Lett. 3, 925 (2003).
http://dx.doi.org/10.1021/nl0342186
6.
6. Y. Q. Chen, X. F. Cui, K. Zhang, D. Y. Pan, S. Y. Zhang, B. Wang, and J. G. Hou, Chem. Phys. Lett. 369, 16 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01949-8
7.
7. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
http://dx.doi.org/10.1126/science.1058120
8.
8. Z. L. Wang and Z. W. Pan, Adv. Mater. 14, 1029 (2002).
http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1029::AID-ADMA1029>3.0.CO;2-3
9.
9. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater 14, 158 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
10.
10. J. Dai, C. X. Xu, and X. W. Sun, Adv. Mater 23, 4115 (2011).
http://dx.doi.org/10.1002/adma.201102184
11.
11. L. W. Ji, S. J. Young, T. H. Fang, and C. H. Liu, Appl. Phys. Lett. 90, 033109 (2007).
http://dx.doi.org/10.1063/1.2431785
12.
12. J. B. K. Law, and J. T. L. Thong, Appl. Phys. Lett. 88, 133114 (2006).
http://dx.doi.org/10.1063/1.2190459
13.
13. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
http://dx.doi.org/10.1021/nl070111x
14.
14. C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, J. Am. Chem. Soc. 129, 12096 (2007).
http://dx.doi.org/10.1021/ja075249w
15.
15. D. D. Lin, H. Wu, W. Zhang, H. P. Li, and W. Pan, Appl. Phys. Lett. 94, 172103 (2009).
http://dx.doi.org/10.1063/1.3126045
16.
16. G. Cheng, X. H. Wu, B. Liu, B. Li, X. T. Zhang, and Z. L. Du, Appl. Phys. Lett. 99, 203105 (2011).
http://dx.doi.org/10.1063/1.3660580
17.
17. X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, Appl. Phys. Lett. 100, 223114 (2012).
http://dx.doi.org/10.1063/1.4724208
18.
18. S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werner, Small 1, 713 (2005).
http://dx.doi.org/10.1002/smll.200400168
19.
19. C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 93, 112115 (2008).
http://dx.doi.org/10.1063/1.2987422
20.
20. J. M. Wu and C. H. Kuo, Thin Solid Films 517, 3870 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.01.120
21.
21. C. H. Lin, T. T. Chen, and Y. F. Chen, Opt. Express. 16, 16916 (2008).
http://dx.doi.org/10.1364/OE.16.016916
22.
22. Q. Wan, E. Dattoli, and W. Lu, Small 4, 451 (2008).
http://dx.doi.org/10.1002/smll.200700753
23.
23. Y. Chen, C. Zhu, M. Cao, and T. Wang, Nanotechnology 18, 285502 (2007).
http://dx.doi.org/10.1088/0957-4484/18/28/285502
24.
24. L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu, and X. S. Fang, small. 7, 1012 (2011).
http://dx.doi.org/10.1002/smll.201002379
25.
25. H. Chen, L. F. Hu, X. S. Fang, and L. M. Wu, Adv. Funct. Mater. 22, 1229 (2012).
http://dx.doi.org/10.1002/adfm.201102506
26.
26. R. K. Joshi and J. J. Schneider, Chem. Soc. Rev. 41, 52855312 (2012).
http://dx.doi.org/10.1039/c2cs35089k
27.
27. J. Y. Lao, J. G. Wen, and Z. F. Ren, Nano Lett. 2, 12871291 (2002).
http://dx.doi.org/10.1021/nl025753t
28.
28. J. Yan, X. S. Fang, L. D. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, Nano Letters 8, 27942799 (2008).
http://dx.doi.org/10.1021/nl801353c
29.
29. J. L. Zhai, L. L. Wang, D. J. Wang, H. Y. Li, Y. Zhang, D. Q. He, and T. F. Xie, ACS Applied Materials & Interfaces 3, 22532258 (2011).
http://dx.doi.org/10.1021/am200008y
30.
30. W. Zhou, C. Cheng, J. P. Liu, Y. Y. Tay, J. Jiang, X. T. Jia, J. X. Zhang, H. Gong, H. H. Hng, T. Yu, and H. J. Fan, Adv. Funct. Mater. 21, 24392445 (2011).
http://dx.doi.org/10.1002/adfm.201100088
31.
31. L. F. Hu, J. Yan, M. Y. Liao, H. J. Xiang, X. G. Gong, L. D. Zhang, and X. S. Fang, Adv. Mater. 24, 23052309 (2012).
http://dx.doi.org/10.1002/adma.201200512
32.
32. C. W. Cheng, B. Liu, H. Y. Yang, W. W. Zhou, L. Sun, R. Chen, S. F. Yu, J. X. Zhang, H. Gong, H. D. Sun, and H. J. Fan, ACS Nano 3, 30693076 (2009).
http://dx.doi.org/10.1021/nn900848x
33.
33. C. S. Wang, H. Y. Lin, T. H. Lin, and Y. F. Chen, AIP Advances 2, 012133 (2012).
http://dx.doi.org/10.1063/1.3684634
34.
34. Z. Q. Liu, L. X. Ding, Z. L. Wang, et al., CrystEngComm 14, 22892295 (2012).
http://dx.doi.org/10.1039/c2ce06296h
35.
35. P. G. Li, X. Guo, X. F. Wang, and W. H. Tang, Journal of Alloys and Compounds. 479, 7477 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.01.054
36.
36. A. Kar, J. Y. Yang, M. Dutta, M. A. Stroscio, J. Kumari, and M. Meyyappan, Nanotechnology 20, 065704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/6/065704
37.
37. L. Z. Liu, X. L. Wu, J. Q. Xu, T. H. Li, J. C. Shen, and P. K. Chu, Appl. Phys. Lett. 100, 121903 (2012).
http://dx.doi.org/10.1063/1.3696044
38.
38. Y. C. Her, J. Y. Wu, Y. R. Lin, and S. Y. Tsai, Appl. Phys. Lett. 89, 043115 (2006).
http://dx.doi.org/10.1063/1.2235925
39.
39. J. C. C. Fan and J. B. J. Goodenough, Appl. Phys. 48, 3524 (1977).
http://dx.doi.org/10.1063/1.324149
40.
40. X. Y. Xu, C. X. Xu, J. Dai, J. G. Hu, F. J. Li, and S. Zhang, J. Phys. Chem. C 116, 8813−8818 (2012).
http://dx.doi.org/10.1021/jp3014749
41.
41. A. Prakash, S. K. Misra, and D. Bahadur, Nanotechnology 24, 095705 (2013).
http://dx.doi.org/10.1088/0957-4484/24/9/095705
42.
42. M. Z. Wu, L. Z. Yao, W. L. Cai, G. W. Jiang, X. G. Li, and Z. Yao, J. Mater. Sci. Technol. 20, 1113 (2004).
http://dx.doi.org/10.1179/026708304225012080
43.
43. A. Kar, M. A. Stroscio, M. Dutta, J. Kumari, and M. Meyyappan, Appl. Phys. Lett. 94, 101905 (2009).
http://dx.doi.org/10.1063/1.3097011
44.
44. S. Das, S. Kar, and S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006).
http://dx.doi.org/10.1063/1.2200449
45.
45. M. Gaidi, A. Hajjaji, R. Smirani, B. Bessais, and M. A. El Khakani, Citation: J. Appl. Phys. 108, 063537 (2010).
http://dx.doi.org/10.1063/1.3485811
46.
46. Y. F. Li, W. J. Yin, R. Deng, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, NPG. Asia. Mater. 4, e30 (2012).
http://dx.doi.org/10.1038/am.2012.56
47.
47. R. Chen, G. Z. Xing, J. Gao, Z. Zhang, T. Wu, and H. D. Sun, Appl. Phys. Lett. 95, 061908 (2009).
http://dx.doi.org/10.1063/1.3205122
48.
48. H. Y. Yang, S. F. Yu, S. H. Tsang, T. P. Chen, J. Gao, and T. Wu, Appl. Phys. Lett. 94, 241121 (2009).
http://dx.doi.org/10.1063/1.3157842
49.
49. B. Liu, C. W. Cheng, R. Shen, Z. X. Shen, H. J. Fan, and H. D. Sun, J. Phys. Chem. C. 114, 3407 (2010).
http://dx.doi.org/10.1021/jp9104294
50.
50. A. Baltakesmez, S. Tekmen, P. Köç, S. T¨uzemen, K. Meral, and Y. Onganer, AIP ADVANCES 3, 032125 (2013).
http://dx.doi.org/10.1063/1.4795737
51.
51. L. C. Campos, M. H. D. Guimarães, A. M. B. Goncalves, S. de Oliveira, and R. G. Lacerda, AIP ADVANCES 3, 022104 (2013).
http://dx.doi.org/10.1063/1.4790633
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811174
Loading
/content/aip/journal/adva/3/6/10.1063/1.4811174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4811174
2013-06-07
2014-12-20

Abstract

Brush-like hierarchical SnO/ZnO nanostructure with high surface to volume ratio was synthesized by a two-step growth method. In the first growth stage, SnO nanowires were fabricated by vapor transport method. In the second growth stage, ZnO nanorods were hydrothermally grown up around the SnO nanowires to form brush-like SnO/ZnO hierarchical structure. The structure morphology was characterized by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The oxygen vacancy related photoluminescence from the nanostructure was investigated based on the XPS result. A UV photodetector was realized using the brush-like SnO/ZnO nanostructure as active layer. The device showed good reversibility and response speed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4811174.html;jsessionid=v6iit4rv4ayz.x-aip-live-03?itemId=/content/aip/journal/adva/3/6/10.1063/1.4811174&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Brush-like SnO2/ZnO hierarchical nanostructure: Synthesis, characterization and application in UV photoresponse
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811174
10.1063/1.4811174
SEARCH_EXPAND_ITEM