NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Brush-like SnO2/ZnO hierarchical nanostructure: Synthesis, characterization and application in UV photoresponse
Rent this article for
Access full text Article
1. M. S. Gudlksen, L. J. Lauhon, J. F. Wang, D. V. Smith, and C. M. Lieber, Nature 415, 617 (2002).
2. L. Guo, Y. L. Ji, H. B. Xu, P. Simon, and Z. Y. Wu, J. Am. Chem. Soc. 124, 1486414865 (2002).
3. S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, J. Am. Chem. Soc. 15, 32943299 (2003).
4. Z. R. Dai, Z. W. Pan, and Z. L. Wang, J. Am. Chem. Soc. 124, 86738680 (2002).
5. P. Nguyen, H. T. Ng, J. Kong, A. M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan, Nano Lett. 3, 925 (2003).
6. Y. Q. Chen, X. F. Cui, K. Zhang, D. Y. Pan, S. Y. Zhang, B. Wang, and J. G. Hou, Chem. Phys. Lett. 369, 16 (2003).
7. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
8. Z. L. Wang and Z. W. Pan, Adv. Mater. 14, 1029 (2002).<1029::AID-ADMA1029>3.0.CO;2-3
9. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater 14, 158 (2002).<158::AID-ADMA158>3.0.CO;2-W
10. J. Dai, C. X. Xu, and X. W. Sun, Adv. Mater 23, 4115 (2011).
11. L. W. Ji, S. J. Young, T. H. Fang, and C. H. Liu, Appl. Phys. Lett. 90, 033109 (2007).
12. J. B. K. Law, and J. T. L. Thong, Appl. Phys. Lett. 88, 133114 (2006).
13. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
14. C. S. Lao, M. C. Park, Q. Kuang, Y. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, J. Am. Chem. Soc. 129, 12096 (2007).
15. D. D. Lin, H. Wu, W. Zhang, H. P. Li, and W. Pan, Appl. Phys. Lett. 94, 172103 (2009).
16. G. Cheng, X. H. Wu, B. Liu, B. Li, X. T. Zhang, and Z. L. Du, Appl. Phys. Lett. 99, 203105 (2011).
17. X. W. Fu, Z. M. Liao, Y. B. Zhou, H. C. Wu, Y. Q. Bie, J. Xu, and D. P. Yu, Appl. Phys. Lett. 100, 223114 (2012).
18. S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werner, Small 1, 713 (2005).
19. C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 93, 112115 (2008).
20. J. M. Wu and C. H. Kuo, Thin Solid Films 517, 3870 (2009).
21. C. H. Lin, T. T. Chen, and Y. F. Chen, Opt. Express. 16, 16916 (2008).
22. Q. Wan, E. Dattoli, and W. Lu, Small 4, 451 (2008).
23. Y. Chen, C. Zhu, M. Cao, and T. Wang, Nanotechnology 18, 285502 (2007).
24. L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu, and X. S. Fang, small. 7, 1012 (2011).
25. H. Chen, L. F. Hu, X. S. Fang, and L. M. Wu, Adv. Funct. Mater. 22, 1229 (2012).
26. R. K. Joshi and J. J. Schneider, Chem. Soc. Rev. 41, 52855312 (2012).
27. J. Y. Lao, J. G. Wen, and Z. F. Ren, Nano Lett. 2, 12871291 (2002).
28. J. Yan, X. S. Fang, L. D. Zhang, Y. Bando, U. K. Gautam, B. Dierre, T. Sekiguchi, and D. Golberg, Nano Letters 8, 27942799 (2008).
29. J. L. Zhai, L. L. Wang, D. J. Wang, H. Y. Li, Y. Zhang, D. Q. He, and T. F. Xie, ACS Applied Materials & Interfaces 3, 22532258 (2011).
30. W. Zhou, C. Cheng, J. P. Liu, Y. Y. Tay, J. Jiang, X. T. Jia, J. X. Zhang, H. Gong, H. H. Hng, T. Yu, and H. J. Fan, Adv. Funct. Mater. 21, 24392445 (2011).
31. L. F. Hu, J. Yan, M. Y. Liao, H. J. Xiang, X. G. Gong, L. D. Zhang, and X. S. Fang, Adv. Mater. 24, 23052309 (2012).
32. C. W. Cheng, B. Liu, H. Y. Yang, W. W. Zhou, L. Sun, R. Chen, S. F. Yu, J. X. Zhang, H. Gong, H. D. Sun, and H. J. Fan, ACS Nano 3, 30693076 (2009).
33. C. S. Wang, H. Y. Lin, T. H. Lin, and Y. F. Chen, AIP Advances 2, 012133 (2012).
34. Z. Q. Liu, L. X. Ding, Z. L. Wang, et al., CrystEngComm 14, 22892295 (2012).
35. P. G. Li, X. Guo, X. F. Wang, and W. H. Tang, Journal of Alloys and Compounds. 479, 7477 (2009).
36. A. Kar, J. Y. Yang, M. Dutta, M. A. Stroscio, J. Kumari, and M. Meyyappan, Nanotechnology 20, 065704 (2009).
37. L. Z. Liu, X. L. Wu, J. Q. Xu, T. H. Li, J. C. Shen, and P. K. Chu, Appl. Phys. Lett. 100, 121903 (2012).
38. Y. C. Her, J. Y. Wu, Y. R. Lin, and S. Y. Tsai, Appl. Phys. Lett. 89, 043115 (2006).
39. J. C. C. Fan and J. B. J. Goodenough, Appl. Phys. 48, 3524 (1977).
40. X. Y. Xu, C. X. Xu, J. Dai, J. G. Hu, F. J. Li, and S. Zhang, J. Phys. Chem. C 116, 8813−8818 (2012).
41. A. Prakash, S. K. Misra, and D. Bahadur, Nanotechnology 24, 095705 (2013).
42. M. Z. Wu, L. Z. Yao, W. L. Cai, G. W. Jiang, X. G. Li, and Z. Yao, J. Mater. Sci. Technol. 20, 1113 (2004).
43. A. Kar, M. A. Stroscio, M. Dutta, J. Kumari, and M. Meyyappan, Appl. Phys. Lett. 94, 101905 (2009).
44. S. Das, S. Kar, and S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006).
45. M. Gaidi, A. Hajjaji, R. Smirani, B. Bessais, and M. A. El Khakani, Citation: J. Appl. Phys. 108, 063537 (2010).
46. Y. F. Li, W. J. Yin, R. Deng, J. Chen, Q. Y. Yan, B. Yao, H. D. Sun, S. H. Wei, and T. Wu, NPG. Asia. Mater. 4, e30 (2012).
47. R. Chen, G. Z. Xing, J. Gao, Z. Zhang, T. Wu, and H. D. Sun, Appl. Phys. Lett. 95, 061908 (2009).
48. H. Y. Yang, S. F. Yu, S. H. Tsang, T. P. Chen, J. Gao, and T. Wu, Appl. Phys. Lett. 94, 241121 (2009).
49. B. Liu, C. W. Cheng, R. Shen, Z. X. Shen, H. J. Fan, and H. D. Sun, J. Phys. Chem. C. 114, 3407 (2010).
50. A. Baltakesmez, S. Tekmen, P. Köç, S. T¨uzemen, K. Meral, and Y. Onganer, AIP ADVANCES 3, 032125 (2013).
51. L. C. Campos, M. H. D. Guimarães, A. M. B. Goncalves, S. de Oliveira, and R. G. Lacerda, AIP ADVANCES 3, 022104 (2013).

Data & Media loading...


Article metrics loading...



Brush-like hierarchical SnO/ZnO nanostructure with high surface to volume ratio was synthesized by a two-step growth method. In the first growth stage, SnO nanowires were fabricated by vapor transport method. In the second growth stage, ZnO nanorods were hydrothermally grown up around the SnO nanowires to form brush-like SnO/ZnO hierarchical structure. The structure morphology was characterized by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The oxygen vacancy related photoluminescence from the nanostructure was investigated based on the XPS result. A UV photodetector was realized using the brush-like SnO/ZnO nanostructure as active layer. The device showed good reversibility and response speed.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Brush-like SnO2/ZnO hierarchical nanostructure: Synthesis, characterization and application in UV photoresponse