1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Photoconductivity of amorphous As2S8 chalcogenide film under bandgap light irradiation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4811243
1.
1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nature Photonics 5, 141 (2011).
2.
2. A. C. Van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, J. N. McMullin, D. Tonchev, and S. O. Kasap, Opt. Express 10, 639 (2002).
http://dx.doi.org/10.1364/OE.10.000639
3.
3. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, Appl. Phys. Lett. 60, 1153 (1992).
http://dx.doi.org/10.1063/1.107388
4.
4. A. Saitoh, T. Gotoh, and K. Tanaka, J. Non-Cryst. Solids 299–302, 983 (2002).
http://dx.doi.org/10.1016/S0022-3093(01)01063-8
5.
5. T. Zhang, Z. Song, B. Liu, S. Feng, and B. Chen, Solid-State Electronics 51, 950 (2007).
http://dx.doi.org/10.1016/j.sse.2007.03.016
6.
6. M. D. Pelusi, V. G. Ta'eed, L. Fu, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, IEEE J. of Selected Topics in Q. Electron. 14, 529 (2008).
http://dx.doi.org/10.1109/JSTQE.2008.918669
7.
7. L. E. Zou, B. X. Chen, H. S. Lin, H. Hamanaka, and M. Iso, Appl. Opt. 48, 6442 (2009).
http://dx.doi.org/10.1364/AO.48.006442
8.
8. P. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla, and G. Farrell, Appl. Phys. Lett. 102, 131110 (2013).
http://dx.doi.org/10.1063/1.4801474
9.
9. R. Ahmad, C. Baker, and M. Rochette, Optics Letters 36, 2886 (2011).
http://dx.doi.org/10.1364/OL.36.002886
10.
10. M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, Optics Letters 37, 3900 (2012).
http://dx.doi.org/10.1364/OL.37.003900
11.
11. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. of Selected Topics in Q. Electron. 15, 114 (2009).
http://dx.doi.org/10.1109/JSTQE.2008.2010245
12.
12. L. E. Zou, B. X. Chen, L. P. Du, H. Hamanaka, and M. Iso, J. Appl. Phys. 103, 123523 (2008).
http://dx.doi.org/10.1063/1.2942397
13.
13. P. K. Gupta, J. Non-Cryst. Solids 195, 158 (1996).
http://dx.doi.org/10.1016/0022-3093(95)00502-1
14.
14. L. E. Zou, B. X. Chen, L. Chen, and Y. F. Yuan, Appl. Phys. Lett. 88, 153510 (2006).
http://dx.doi.org/10.1063/1.2195782
15.
15. D. L. Starbler and C. R. Wronski, J. Appl. Phys. 51, 3262 (1980).
http://dx.doi.org/10.1063/1.328084
16.
16. K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, Phys. Rev. B 72, 014203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014203
17.
17. A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, J. Chem. Phys. 118, 8460 (2003).
http://dx.doi.org/10.1063/1.1566938
18.
18. S. N. Yannopoulos, Phys. Rev. B 68, 064206 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.064206
19.
19. A. Stronski, M. Vlcek, and A. Skenar, Semicond. Phys., Quantum Electron.Optoelectron. 3, 394 (2000).
20.
20. A. Zakery and S. R. Elliott, J. Non-Cryst. Solids 330, 1 (2003).
http://dx.doi.org/10.1016/j.jnoncrysol.2003.08.064
21.
21. M. Kastner, Phys. Rev. Lett. 28, 355 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.355
22.
22. M. Kastner, D. Adler, and H. Fritzshe, Phys. Rev. Lett. 37, 1504 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.1504
23.
23. D. Adler, J. Non. Cryst. Solids 35&36, 819 (1980).
http://dx.doi.org/10.1016/0022-3093(80)90301-4
24.
24. R. A. Street and N. F. Mott, Phys. Rev. Lett. 35, 1293 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.1293
25.
25. P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.953
26.
26. K. Shimakawa, A. Kolobov, and S. R. Elliott, Adv. Phys. 44, 475 (1995).
http://dx.doi.org/10.1080/00018739500101576
27.
27. N. F. Mott, E. A. Davis, and R. A. Street, Phil. Mag. 32, 961 (1975).
http://dx.doi.org/10.1080/14786437508221667
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811243
Loading
/content/aip/journal/adva/3/6/10.1063/1.4811243
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4811243
2013-06-10
2014-10-24

Abstract

The photoconductivity of amorphous AsS chalcogenide film under the irradiation of bandgap light is investigated. In the temperature range 300–350 K, the dark conductivity and photoconductivity of the annealed AsS film increase with the temperature, and the dependence of the both on temperature shows that the conduction in AsS film is an activated process having single activation energy. Under the irradiation of bandgap light, the photocurrents of the annealed and illuminated AsS film increase with the irradiation intensity, and their difference indicates the existence of the light-soaked effect. Meanwhile, the photoconductivity degradation during the irradiation and the photocurrent decay after stopping the irradiation are observed. By adding the irradiation of the sub-bandgap light, the enhancement of photoinduced voltage occurs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4811243.html;jsessionid=6tcmu9it0qap6.x-aip-live-06?itemId=/content/aip/journal/adva/3/6/10.1063/1.4811243&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photoconductivity of amorphous As2S8 chalcogenide film under bandgap light irradiation
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811243
10.1063/1.4811243
SEARCH_EXPAND_ITEM