Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Marek, J Appl Phys 55(2), 318326 (1984).
2. J. Carstensen, G. Popkirov, J. Bahr, and H. Foll, Sol Energ Mat Sol C 76(4), 599611 (2003).
3. S. Smith, P. Zhang, T. Gessert, and A. Mascarenhas, Appl Phys Lett 85(17), 38543856 (2004).
4. J. K. Larsen, L. Gutay, Y. Aida, and S. Siebentritt, Thin Solid Films 519(21), 73327336 (2011).
5. P. R. Edwards, S. A. Galloway, and K. Durose, Thin Solid Films 372(1–2), 284291 (2000).
6. C. Gutsche, R. Niepelt, M. Gnauck, A. Lysov, W. Prost, C. Ronning, and F. J. Tegude, Nano Lett 12(3), 14531458 (2012).
7. H. P. Yoon, D. Ruzmetov, P. M. Haney, M. S. Leite, B. H. Hamadani, A. A. Talin, and N. B. Zhitenev, 38th IEEE PVSC, 32173219 (2012).
8. P. Reuter, T. Rath, A. Fischereder, G. Trimmel, and P. Hadley, Scanning 33(1), 16 (2011).
9. M. Sezen, H. Plank, P. M. Nellen, S. Meier, B. Chernev, W. Grogger, E. Fisslthaler, E. J. W. List, U. Scherf, and P. Poelt, Phys Chem Chem Phys 11(25), 51305133 (2009).
10. C. A. Klein, IEEE J Quantum Elect QE 4(4), 186194 (1968).
11. L. Reimer, Scanning electron microscopy: physics of image formation and microanalysis (Springer, 1998).
12. F. J. G. de Abajo, Rev Mod Phys 82(1), 209275 (2010).
13. C. A. Klein, J Appl Phys 39(4), 2029 (1968).
14. H. J. Leamy, J Appl Phys 53(6), R51R80 (1982).
15. W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, Opt Express 18(12), 1289712902 (2010).
16. N. de Jonge and F. M. Ross, Nat Nanotechnol 6(11), 695704 (2011).
17. Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, Opt Express 20(5), 56295635 (2012).
18. See supplementary material at for fluorescence and photoluminescence spectra, size of the QDs and the thickness of the QD layer, a set of CL spectra at different acceleration voltages, details of analytical and FDTD calculations, estimated CL fractions, and for more comparison. [Supplementary Material]
19. O. E. Semonin, J. M. Luther, S. Choi, H. Y. Chen, J. B. Gao, A. J. Nozik, and M. C. Beard, Science 334(6062), 15301533 (2011).
20. M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, Nano Lett 8(11), 39043910 (2008).
21. P. Das and T. K. Chini, Curr Sci India 101(7), 849854 (2011).
22. H. Klauk, J. R. Huang, J. A. Nichols, and T. N. Jackson, Thin Solid Films 366(1–2), 272278 (2000).
23. P. W. Hawkes, Advances in imaging and electron physics (Academic Press, San Diego, 2007).
24. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, Scanning 29(3), 92101 (2007).
25. K. Mitchell, A. L. Fahrenbruch, and R. H. Bube, J Appl Phys 48(2), 829830 (1977).
26. I. H. Campbell and B. K. Crone, Adv Mater 18(1), 7779 (2006).
27. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett 5(5), 865871 (2005).
28. Z. T. Kang, Y. L. Zhang, H. Menkara, B. K. Wagner, C. J. Summers, W. Lawrence, and V. Nagarkar, Appl Phys Lett 98(18) (2011).
29. B. G. Yacobi and D. B. Holt, J Appl Phys 59(4), R1R24 (1986).
30. J. J. Zou, B. K. Chang, H. L. Chen, and L. Liu, J Appl Phys 101(3) (2007).
31. M. Inoue, J Appl Phys 55(6), 15581565 (1984).
32. M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, J Am Chem Soc 109(12), 35593568 (1987).

Data & Media loading...


Article metrics loading...



We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL) from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC) using a thin film solar cell (-CdS / -CdTe). Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots), is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd