Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. F. Kozlov, E. A. Konorova, Y. A. Kuznetsov, Y. A. Salikov, V. I. Redko, V. R. Grinberg, and M. L. Meilman, IEEE TNS 24, 235 (1977).
2. G. Faggio, M. Marinelli, G. Messina, E. Milani, A. Paoletti, S. Santangelo, and G. V. Rinati, Microsystem Technol. 6, 23 (1999).
3. P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, B. Guizard, F. Foulon, and V. Amosov, Diam. Relat. Mater. 10, 631 (2001).
4. P. Bergonzo, D. Tromson, and C. Mer, Semicond. Sci. Technol. 18, S105S112 (2003).
5. Sh. Michaelson, O. Ternyak, R. Akhvlediani, A. Hoffman, A. Lafosse, R. Azria, O. A. Williams, and D. M. Gruen, J. Appl. Phys. 102, 113516 (2007).
6. C. J. Tang, M. A. Neto, M. J. Soares, A. J. S. Fernandes, A. J. Neves, and J. Grácio, Thin Solid Films 515, 3539 (2007).
7. P. Reichart, G. Datzmann, A. Hauptner, R. Hertenberger, C. Wild, and G. Dollinger, Science 306, 1537 (2004).
8. P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith, and K. N. Rosser, Chem. Phys. Lett. 446, 103 (2007).
9. K. H. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, J. Appl. Phys. 88, 2967 (2000).
10. S. S. Chen, H. C. Chen, W. C. Wang, C. Y. Lee, I. N. Lin, J. Guo, and C. L. Chang, J. Appl. Phys. 113, 113704 (2013).
11. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1969).
12. D. M. Gruen, Annu. Rev. Mater. Sci. 29, 211 (1999).
13. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, Appl. Phys. Lett. 81, 2235 (2002).
14. B. Dischler, C. Wild, W. M-Sebert, and P. Koidl, Physica B 185, 217 (1993).
15. S. Prawer and R. Kalish, Phys. Rev. B 51, 15711 (1995).
16. J. Krauser, J.-H , Zollondz, A. Weidinger, and C. Trautmann, J. Appl. Phys. 94, 1959 (2003).
17. N. Koenigsfeld, H. Hofsäss, D. Schwen, A. Weidinger, C. Trautmann, and R. Kalish, Diam. Relat. Mater. 12, 469 (2003).
18. S. Prawer, A. Hoffman, and R. Kalish, Appl. Phys. Lett. 57, 2187 (1990).
19. W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, D. C. Jacobson, M. McCormack, and A. E. White, Appl. Phys. Lett. 67, 1157 (1995).
20. N. Dilawar, R. Kapil, V. D. Vankar, D. K. Avasthi, D. Kabiraj, and G. K. Mehta, Thin Solid Films 305, 88 (1997).
21. A. Dunlop, G. Jaskierowicz, P. M. Ossi, and S. Della-Negra, Phys. Rev. B 76, 155403 (2007).
22. P. T. Pandey, G. L. Sharma, D. K. Awasthi, and V. D. Vankar, Vacuum 72, 297 (2004).
23. P. M. Koinkar, R. S. Khairnar, S. A. Khan, R. P. Gupta, D. K. Avasthi, and M. A. More, Nucl. Instr. and Meth. B. 244, 217 (2006).
24. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985).
25. R. H. Fowler and L. W. Nordheim, Proc. Roy. Soc. A 119, 173 (1928)
26. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, J. Johnson, and J. A. Carlisle, Diamond & Related Materials 14, 8692 (2005)
27. S. Prawer, R. Kalish, M. Adel, and V. Richter, J. Appl. Phys. 61, 4492 (1987)
28. J. F. Morar, F. J. Himpsel, G. Hollinger, J. L. Jordon, G. Hughes, and F. R. McFeely, Phys. Rev. B 33, 1346 (1986).
29. J. Stöhr, NEXAFS Spectroscopy (Springer, New York, 1992).
30. J. F. Morar, F. J. Himpsel, G. Hollinger, J. L. Jordon, and G. Hughes, Phys. Rev. Lett. 54, 1960 (1985).
31. F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, Appl. Phys. Lett. 69, 568 (1996).
32. Y. H. Tang, X. T. Zhou, Y. F. Hu, C. S. Lee, S. T. Lee, and T. K. Sham, Chem. Phys. Lett. 372, 320 (2003).
33. L. Ponsonnet, C. Donnet, K. Varlot, J. M. Martin, A. Grill, and V. Patel, Thin Solid Films 319, 97 (1998).
34. A. Laikhtman, I. Gouzman, and A. Hoffman, Diam. Relat. Mater. 9, 1026 (2000).
35. R. Gago, I. Jiménez, and J. M. Albella, Surf. Sci. 482–485, 530 (2001).
36. L. Fayette, B. Marcus, M. Mermoux, G. Tourillon, K. Laffon, P. Parent, and F. Le Normand, Phys. Rev. B 57, 14123 (1998).
37. R. Gago, M. Vinnichenko, H. U. Jäger, A. Yu. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, Phys. Rev. B 72, 014120 (2005).
38. R. Arenal, P. Bruno, D. J. Miller, M. Bleuel, J. Lal, and D. M. Gruen, Phys. Rev. B 75, 195431 (2007).
39. Dieter M. Gruen, Shengzhong Liu, Alan R. Krauss, Jianshu Luo, and Xianzheng Pan, Appl. Phys. Lett. 64 (12), 1502 (1994).
40. C. S. Wang, H. C. Chen, H. F. Cheng, and I. N. Lin, J. Appl. Phys. 107, 034304 (2010).
41. Ying-Gang Lu, Stuart Turner, Johan Verbeeck, Stoffel D. Janssens, Patrick Wagner, Ken Haenen, and Gustaaf Van Tendeloo, Appl. Phys. Lett. 101, 041907 (2012).
42. P. Kovarik, E. B. D. Bourdon, and R. H. Prince, Phys. Rev. B 48, 12123 (1993).
43. S. Prawer, J. L. Peng, J. O. Orwa, J. C. McCallum, D. N. Jamieson, and L. A. Bursill, Phys. Rev. B 62, R16360 (2000).
44. S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill, and J. L. Peng, Chemical Physics Letters 332, 93 (2000).

Data & Media loading...


Article metrics loading...



The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f = 5.0 × 10 ions/cm) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp-bonded phase (π-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd