1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4811338
1.
1. S. F. Kozlov, E. A. Konorova, Y. A. Kuznetsov, Y. A. Salikov, V. I. Redko, V. R. Grinberg, and M. L. Meilman, IEEE TNS 24, 235 (1977).
2.
2. G. Faggio, M. Marinelli, G. Messina, E. Milani, A. Paoletti, S. Santangelo, and G. V. Rinati, Microsystem Technol. 6, 23 (1999).
http://dx.doi.org/10.1007/s005420050170
3.
3. P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, B. Guizard, F. Foulon, and V. Amosov, Diam. Relat. Mater. 10, 631 (2001).
http://dx.doi.org/10.1016/S0925-9635(00)00554-9
4.
4. P. Bergonzo, D. Tromson, and C. Mer, Semicond. Sci. Technol. 18, S105S112 (2003).
http://dx.doi.org/10.1088/0268-1242/18/3/315
5.
5. Sh. Michaelson, O. Ternyak, R. Akhvlediani, A. Hoffman, A. Lafosse, R. Azria, O. A. Williams, and D. M. Gruen, J. Appl. Phys. 102, 113516 (2007).
http://dx.doi.org/10.1063/1.2818372
6.
6. C. J. Tang, M. A. Neto, M. J. Soares, A. J. S. Fernandes, A. J. Neves, and J. Grácio, Thin Solid Films 515, 3539 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.10.132
7.
7. P. Reichart, G. Datzmann, A. Hauptner, R. Hertenberger, C. Wild, and G. Dollinger, Science 306, 1537 (2004).
http://dx.doi.org/10.1126/science.1102910
8.
8. P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith, and K. N. Rosser, Chem. Phys. Lett. 446, 103 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.08.018
9.
9. K. H. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, J. Appl. Phys. 88, 2967 (2000).
http://dx.doi.org/10.1063/1.1287602
10.
10. S. S. Chen, H. C. Chen, W. C. Wang, C. Y. Lee, I. N. Lin, J. Guo, and C. L. Chang, J. Appl. Phys. 113, 113704 (2013).
http://dx.doi.org/10.1063/1.4795507
11.
11. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1969).
12.
12. D. M. Gruen, Annu. Rev. Mater. Sci. 29, 211 (1999).
http://dx.doi.org/10.1146/annurev.matsci.29.1.211
13.
13. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, Appl. Phys. Lett. 81, 2235 (2002).
http://dx.doi.org/10.1063/1.1503153
14.
14. B. Dischler, C. Wild, W. M-Sebert, and P. Koidl, Physica B 185, 217 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90240-7
15.
15. S. Prawer and R. Kalish, Phys. Rev. B 51, 15711 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.15711
16.
16. J. Krauser, J.-H , Zollondz, A. Weidinger, and C. Trautmann, J. Appl. Phys. 94, 1959 (2003).
http://dx.doi.org/10.1063/1.1587263
17.
17. N. Koenigsfeld, H. Hofsäss, D. Schwen, A. Weidinger, C. Trautmann, and R. Kalish, Diam. Relat. Mater. 12, 469 (2003).
http://dx.doi.org/10.1016/S0925-9635(02)00352-7
18.
18. S. Prawer, A. Hoffman, and R. Kalish, Appl. Phys. Lett. 57, 2187 (1990).
http://dx.doi.org/10.1063/1.103931
19.
19. W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, D. C. Jacobson, M. McCormack, and A. E. White, Appl. Phys. Lett. 67, 1157 (1995).
http://dx.doi.org/10.1063/1.114993
20.
20. N. Dilawar, R. Kapil, V. D. Vankar, D. K. Avasthi, D. Kabiraj, and G. K. Mehta, Thin Solid Films 305, 88 (1997).
http://dx.doi.org/10.1016/S0040-6090(97)00167-3
21.
21. A. Dunlop, G. Jaskierowicz, P. M. Ossi, and S. Della-Negra, Phys. Rev. B 76, 155403 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.155403
22.
22. P. T. Pandey, G. L. Sharma, D. K. Awasthi, and V. D. Vankar, Vacuum 72, 297 (2004).
http://dx.doi.org/10.1016/j.vacuum.2003.08.007
23.
23. P. M. Koinkar, R. S. Khairnar, S. A. Khan, R. P. Gupta, D. K. Avasthi, and M. A. More, Nucl. Instr. and Meth. B. 244, 217 (2006).
http://dx.doi.org/10.1016/j.nimb.2005.11.020
24.
24. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985).
25.
25. R. H. Fowler and L. W. Nordheim, Proc. Roy. Soc. A 119, 173 (1928)
http://dx.doi.org/10.1098/rspa.1928.0091
26.
26. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, J. Johnson, and J. A. Carlisle, Diamond & Related Materials 14, 8692 (2005)
http://dx.doi.org/10.1016/j.diamond.2004.07.012
27.
27. S. Prawer, R. Kalish, M. Adel, and V. Richter, J. Appl. Phys. 61, 4492 (1987)
http://dx.doi.org/10.1063/1.338410
28.
28. J. F. Morar, F. J. Himpsel, G. Hollinger, J. L. Jordon, G. Hughes, and F. R. McFeely, Phys. Rev. B 33, 1346 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.1346
29.
29. J. Stöhr, NEXAFS Spectroscopy (Springer, New York, 1992).
30.
30. J. F. Morar, F. J. Himpsel, G. Hollinger, J. L. Jordon, and G. Hughes, Phys. Rev. Lett. 54, 1960 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1960
31.
31. F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, Appl. Phys. Lett. 69, 568 (1996).
http://dx.doi.org/10.1063/1.117789
32.
32. Y. H. Tang, X. T. Zhou, Y. F. Hu, C. S. Lee, S. T. Lee, and T. K. Sham, Chem. Phys. Lett. 372, 320 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00374-9
33.
33. L. Ponsonnet, C. Donnet, K. Varlot, J. M. Martin, A. Grill, and V. Patel, Thin Solid Films 319, 97 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)01094-8
34.
34. A. Laikhtman, I. Gouzman, and A. Hoffman, Diam. Relat. Mater. 9, 1026 (2000).
http://dx.doi.org/10.1016/S0925-9635(00)00224-7
35.
35. R. Gago, I. Jiménez, and J. M. Albella, Surf. Sci. 482–485, 530 (2001).
http://dx.doi.org/10.1016/S0039-6028(01)00939-6
36.
36. L. Fayette, B. Marcus, M. Mermoux, G. Tourillon, K. Laffon, P. Parent, and F. Le Normand, Phys. Rev. B 57, 14123 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.14123
37.
37. R. Gago, M. Vinnichenko, H. U. Jäger, A. Yu. Belov, I. Jiménez, N. Huang, H. Sun, and M. F. Maitz, Phys. Rev. B 72, 014120 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014120
38.
38. R. Arenal, P. Bruno, D. J. Miller, M. Bleuel, J. Lal, and D. M. Gruen, Phys. Rev. B 75, 195431 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195431
39.
39. Dieter M. Gruen, Shengzhong Liu, Alan R. Krauss, Jianshu Luo, and Xianzheng Pan, Appl. Phys. Lett. 64 (12), 1502 (1994).
http://dx.doi.org/10.1063/1.111872
40.
40. C. S. Wang, H. C. Chen, H. F. Cheng, and I. N. Lin, J. Appl. Phys. 107, 034304 (2010).
http://dx.doi.org/10.1063/1.3296187
41.
41. Ying-Gang Lu, Stuart Turner, Johan Verbeeck, Stoffel D. Janssens, Patrick Wagner, Ken Haenen, and Gustaaf Van Tendeloo, Appl. Phys. Lett. 101, 041907 (2012).
http://dx.doi.org/10.1063/1.4738885
42.
42. P. Kovarik, E. B. D. Bourdon, and R. H. Prince, Phys. Rev. B 48, 12123 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.12123
43.
43. S. Prawer, J. L. Peng, J. O. Orwa, J. C. McCallum, D. N. Jamieson, and L. A. Bursill, Phys. Rev. B 62, R16360 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16360
44.
44. S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill, and J. L. Peng, Chemical Physics Letters 332, 93 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01236-7
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811338
Loading
/content/aip/journal/adva/3/6/10.1063/1.4811338
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4811338
2013-06-11
2014-12-20

Abstract

The potential of utilizing the ultra-nanocrystalline (UNCD) films for detecting the Au-ion irradiation was investigated. When the fluence for Au-ion irradiation is lower than the critical value (f = 5.0 × 10 ions/cm) the turn-on field for electron field emission (EFE) process of the UNCD films decreased systematically with the increase in fluence that is correlated with the increase in sp-bonded phase (π-band in EELS) due to the Au-ion irradiation. The EFE properties changed irregularly, when the fluence for Au-ion irradiation exceeds this critical value. The transmission electron microscopic microstructural examinations, in conjunction with EELS spectroscopic studies, reveal that the structural change preferentially occurred in the diamond-to-Si interface for the samples experienced over critical fluence of Au-ion irradiation, viz. the crystalline SiC phase was induced in the interfacial region and the thickness of the interface decreased. These observations implied that the UNCD films could be used as irradiation detectors when the fluence for Au-ion irradiation does not exceed such a critical value.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4811338.html;jsessionid=1vg6rwuykplyj.x-aip-live-03?itemId=/content/aip/journal/adva/3/6/10.1063/1.4811338&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The potential application of ultra-nanocrystalline diamond films for heavy ion irradiation detection
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811338
10.1063/1.4811338
SEARCH_EXPAND_ITEM