Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. X. Xiao, M. Zhao, and Q. Jiang, J. App. Phys. 110, 054308 (2011).
2. H. M. Lin, Y. L. Chen, J. Yang, Y. C. Liu, K. M. Yin, J. J. Kai, F. R. Chen, L. C. Chen, Y. F. Chen, and C. C. Chen, Nano. Lett. 3, 537 (2003).
3. R. Singh, E. J. Dailey, J. Drucker, and J. Menendez, J. App. Phys. 110, 124305 (2011).
4. W. Qi, L. Luo, H. S. Qian, G. Ouyang, K. K. Nanda, and S. O. Obare, J. Nanomat. 2012, 2 (2012).
5. N. D. Amador, R. Cusco, L. Artus, T. Stoica, and R. Calarco, Nanotech. 23, 085702 (2012).
6. J. Arvanitidis, M. Katsikini, S. Ves, A. Delimitis, Th. Kehagias, Ph. Komninou, E. Dimakis, E. Iliopoulos, and A. Georgakilas, Phys. Stat. sol. (b). 243, 1588 (2006).
7. H. Zeng, W. Cai, B. Cao, J. Hu, Y. Li, and P. Liu, Appl. Phys. Lett. 88, 181905 (2006).
8. R. Kirste, S. Mohn, M. R. Wagner, J. S. Reparaz, and A. Hoffmann, Appl. Phys. Lett. 101, 041909 (2012).
9. M. Kuball, Surf. Interface Anal. 31, 987 (2001).
10. S. Sahoo, M. S. Hu, C. W. Hsu, C. T. Wu, K. H. Chen, L. C. Chen, A. K. Arora, and S. Dhara, Appl. Phys. Lett. 93, 233116 (2008).
11. F. A. Rueda, E. E. Mendez, B. Bojarczuk, and S. Guha, Solid. State. Commun. 115, 19 (2000).
12. Z. G. Qian, G. Yu, W. Z. Shen, H. Ogawa, and Q. X. Guo, Physica B. 318, 180 (2002).
13. V. Y. Davydov, A. A. Klochikhin, A. N. Smimov, I. Y. Strashkova, A. S. Krylov, H. Lu, W. J. Schaff, H. M. Lee, Y. L. Hong, and S. Gwo, Physic. Rev B. 80, 081204 (2009).
14. Y.-M. Chang, H. W. Chu, C.-H. Shen, and S. Gwo, App. Phys. Lett. 90, 072110 (2007).
15. Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen, and C. C. Chen, Advanced Functional Materials. 14, 233 (2004).
16. K. Jeganathan, V. Purushothaman, R. K. Debnath, R. Calarco, and H. Luth, Appl. Phys. Lett. 97, 093104 (2010).
17. S. Lazic, E. Gallardo, J. M. Calleja, F. A. Rueda, J. Grandal, M. A. S. Garcia, and E. Calleja, Physica status solidi (c). 5, 1562 (2008).
18. J. M. Hayes MSci, H. H. Wills Physics Laboratory, University of Bristol.
19. G. Irmer, V. V. Toporov, B. H. Bairamov, and J. Monecke, Phys. Stat.sol. (b) 119, 595 (1983).
20. S. G. Sheng, L. X. Fang, W. H. Lei, Y. G. Guo, D. Lin, Z. Liu, Z. W. Shun, W. Lei, Z. Y. Ping, L. X. Guang, and W. Z. Guo, Chin. Phys. B. 20, 033301 (2011).
21. M. Alevli, Physics and Astronomy Dissertations. (2008), Paper 24.
22. J. S. Dyck, K. Kim, S. Limpijumnong, W. R. L. Lambrecht, K. Kash, and J. C. Angus, Solid. State. Commun. 114, 355 (2000).
23. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).
24. I. H. Champbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).
25. R. Cuscol, E. A. Llado, J. Ibanez, T. Yamaguchi, Y. Nanishi, and L. Artus, J. Phys. Condens Matter. 41, 415801 (2009).
26. O. Kryliouk, H. J. Park, Y. S. Won, T. Anderson, A. Davydov, I. Levin, J. H. Kim, and J. A. Freitas, Nanotechnology. 18, 135606 (2007).
27. J. Arvanitidis, D. Christofilos, G. A. Kourouklis, A. Delimitis, M. Katsikini, P. Komninou, S. Ves, E. Dimakis, and A. Georgakilas, J. Appl. Phys. 100, 113516 (2006).

Data & Media loading...


Article metrics loading...



The electron-phonon interactions in InN-GaN core-shell nanowires grown by plasma assisted- molecular beam epitaxy (MBE) on Si (111) substrate have been analysed using micro-Raman spectroscopic technique with the excitation wavelength of 633, 488 and 325 nm. The Raman scattering at 633 nm reveals the characteristic E (high) and A (LO) phonon mode of InN core at 490 and 590 cm respectively and E (high) phonon mode of GaN shell at 573 cm. The free carrier concentration of InN core is found to be low in the order ∼ 10 cm due to the screening of charge carriers by thin GaN shell. Diameter of InN core evaluated using the spatial correlation model is consistent with the transmission electron microscopic measurement of ∼15 nm. The phonon-life time of core-shell nanowire structure is estimated to be ∼0.4 ps. The micro-Raman mapping and its corresponding localised spectra for 325 nm excitation exhibit intense E (high) phonon mode of GaN shell at 573 cm as the decrease of laser interaction length and the signal intensity is quenched at the voids due to high spacing of NWs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd