1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Sintered powder cores of high B s and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4811465
1.
1. A. J. Moses, Scripta Mater. 67, 560 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.02.027
2.
2. Y. Oda, M. Kohno, and A. Honda, J. Magn. Mag. Mater. 320, 2430 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.03.054
3.
3. A. Makino, T. Hatanai, A. Inoue, and T. Masumoto, Mater. Sci. Eng. A 226–228, 594 (1997).
4.
4. R. Hasegawa, J. Non-crys. Solids 287, 405 (2001).
http://dx.doi.org/10.1016/S0022-3093(01)00633-0
5.
5. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).
http://dx.doi.org/10.1109/20.104389
6.
6. K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 70, 6232 (1991).
http://dx.doi.org/10.1063/1.350006
7.
7. K. Suzuki, J. M. Cadogan, V. Sahajwalla, A. Inoue, and T. Masumoto, Mater. Scie. Forum 225–227, 707 (1996).
http://dx.doi.org/10.4028/www.scientific.net/MSF.225-227.707
8.
8. M. Miglierini,, T. Kanuch, P. Svec, T. Krenicky, M. Vujtek, and R. Zboril, Phys. Stat. Sol. (b) 243, 57 (2006).
http://dx.doi.org/10.1002/pssb.200562446
9.
9. A. M. Tonejc, N. Ramsak, A. Prodan, S. Surinach, and B. D. Baro, Mater. Sci. Eng. B 63, 238 (1999).
http://dx.doi.org/10.1016/S0921-5107(99)00140-3
10.
10. H. Okumura, D. E. Laughlin, and M. E. McHenry, J. Magn. Magn.Mater. 267, 347 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00403-7
11.
11. A. R. Yavari, G. Fish, S. K. Das, and L. A. Davis, Mater. Sci. Eng. A181/A182, 1415 (1994)
12.
12. M. A. Willard, D. E. Laughlin, M. E. MacHenry, D. Thoma, K. Sickafus, J. O. Cross, and V. G. Harris, J. Appl. Phys. 84, 6773 (1998).
http://dx.doi.org/10.1063/1.369007
13.
13. A. Makino, A. Inoue, and T. Masumoto, Mater. Trans., JIM 36, 924 (1995).
14.
14. A. Makino, IEEE Trans. Magn. 48, 1331 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2175210
15.
15. T. Kubota, A. Makino, and A. Inoue, J. Alloy and Compounds 509S, S416 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.11.012
16.
16. Z. Zhang, P. Sharma, and A. Makino, J. Appl. Phys. 112, 103902 (2012).
http://dx.doi.org/10.1063/1.4765718
17.
17. H. Shokrollahi and K. J. Janghorban, J. Mater. Processing Technol. 189, 1 (2007).
http://dx.doi.org/10.1016/j.jmatprotec.2007.02.034
18.
18. L. A. Dobrzanski, R. Nowosielski, P. Przybyle, and J. Konieczny, J. Mater. Procc. Technol. 162–163, 20 (2005).
http://dx.doi.org/10.1016/j.jmatprotec.2005.02.005
19.
19. B. D. Cullity, Elements of X-ray diffraction, 102 (1978).
20.
20. D. Raybould and K. S. Tan, J. Mater. Scie. 20, 2776 (1985).
http://dx.doi.org/10.1007/BF00553039
21.
21. P. Gramatyka, R. Nowosielski, P. Sakiewicz, and T. Raszka, J. Achievements in Materials and Manufacturing Engineering 15, 27 (2006).
22.
22. B. Hillebrands, Phys. Rev B 41, 530 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.530
23.
23. K. Suzuki and G. Herzer, Scripta Mater. 67, 548 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.03.006
24.
24. K. Suzuki, G. Herzer, and J. M. Cadogan, J. Magn. Mag. Mater. 177–181, 949 (1998).
http://dx.doi.org/10.1016/S0304-8853(97)00987-6
25.
25. D. Nuetzel, G. Rieger, J. Wecker, J. Petzold, and M. Mueller, J. Magn. Mag. Mater. 196–197, 327 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00736-7
26.
26. F. Alves, C. Ramiarinjaona, S. Berenguer, R. Lebourgeois, and T. Waeckerle, IEEE Trans. Magn. 38, 3135 (2002).
http://dx.doi.org/10.1109/TMAG.2002.802420
27.
27. S. Flohrer, R. Schafer, J. McCord, S. Roth, L. Schultz, and G. Herzer, Acta Mater. 54, 3253 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.03.011
28.
28. H. Shokrollahi and K. Janghorban, Mater. Sci. Eng. B 134, 41 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.07.015
29.
29. Y. Zhao, X. Zhang, and J. Q. Xiao, Adv. Mater. 17, 915 (2005).
http://dx.doi.org/10.1002/adma.200401096
30.
30. M. M. Raja, N. Ponpandian, B. Majumdar, A. Narayanasamy, and K. Chattopadhyay, Mater. Sci. Eng. A 304–306, 1062 (2001).
31.
31. E. Bayramli, O. Golgelioglu, and H. B. Ertan, J. Mater. Processing Technology 161, 83 (2005).
http://dx.doi.org/10.1016/j.jmatprotec.2004.07.070
32.
32. J. Fuzerova, J. Fuzer, P. Kollar, L. Hegedus, R. Bures, and M. Faberova, IEEE Trans. Magn. 48, 1545 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2173173
33.
33. L. P. Lefebvre, S. Pelletier, and C. Gelinas, J. Magn. Mag. Mater. 176, L93 (1997).
http://dx.doi.org/10.1016/S0304-8853(97)01006-8
34.
34. Y. Zhang, P. Pillay, M. Ibrahim, and M. C. Cheng, IEEE Trans. Indus. Appl. 48, 623 (2012).
http://dx.doi.org/10.1109/TIA.2011.2180874
35.
35. L. Hultman and O. Andersson, “Advances in SMC technology-Materials and Applications” presented at EURO PM 2009 in Copenhagen, Denmark on October 13, 2009.
36.
36. Hoganas AB, Sweden, Technical papers “http://hoganas.com/en/News-Center/Published-Articles/”.
37.
37. T. Maeda, H. Toyoda, N. Igarashi, K. Hirose, K. Mimura, T. Nishioka, and A. Ikegaya, SEI Technical Review 60, 3 (2005).
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811465
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) XRD pattern, (b) high-resolution TEM image, (c) selected area electron diffraction pattern, and (d) DSC curve of as-quenched FeSiBPCu ribbon.

Image of FIG. 2.

Click to view

FIG. 2.

(a) SEM image, (b) XRD pattern and (c) TEM image of FeSiBPCu powder made from ribbons treated with salt-bath annealing and ball-milling. Inset of (c) shows the selected area electron diffraction pattern, which exhibit white dots on the amorphous ring, suggesting minor crystallization.

Image of FIG. 3.

Click to view

FIG. 3.

Changes in relative density of bulk FeSiBPCu powder cores with sintering temperature ( ).

Image of FIG. 4.

Click to view

FIG. 4.

(a) XRD patterns of bulk FeSiBPCu powder cores sintered at different temperature ( ). Inset shows the variation in average grain size with , and (b) High resolution TEM image and the selected area electron diffraction (SAED) pattern of core sintered at = 680 K.

Image of FIG. 5.

Click to view

FIG. 5.

DSC curves of FeSiBPCu cores sintered at different along with the curves of SB powder and as-quenched ribbons.

Image of FIG. 6.

Click to view

FIG. 6.

(a) BH hysteresis curves (maximum applied magnetic field ∼12 kA/m) for FeSiBPCu bulk cores sintered at = 631 to 773 K. Inset shows the variation in with and, (b) Cross-sectional SEM image of the core sintered at = 680 K.

Image of FIG. 7.

Click to view

FIG. 7.

Variation in (a) relative permeability ( ) with applied field (), and (b) initial permeability ( ) with frequency () for bulk FeSiBPCu cores sintered at different .

Image of FIG. 8.

Click to view

FIG. 8.

Variation in total core-loss ( ) (a) with maximum induction ( ) at 50 Hz, and (b) with frequency () at = 200 mT for bulk FeSiBPCu cores sintered at different . Variation in with is also included for SiO mixed (<2 mass%) core sintered at = 680 K, and non-oriented Fe-3%Si steel.

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4811465
2013-06-12
2014-04-19

Abstract

Nano-crystalline Fe-rich FeSiBP Cu alloy ribbon with saturation magnetic flux density ( ) close to Si-steel exhibits much lower core loss ( ) than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk FeSiBP Cu cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment) were crushed into powdered form (by ball milling), and were compacted to high-density (∼88%) bulk cores by spark plasma sintering (SPS). Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix) similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at = 680 K show < 10 W/kg ( = 50 Hz, ∼1 T). Coating/mixing of powders with an insulating agent like SiO is shown to be effective in further reduction of at > 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low at higher . In the range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO exhibit much lower than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4811465.html;jsessionid=7m0ak6q3r36t.x-aip-live-02?itemId=/content/aip/journal/adva/3/6/10.1063/1.4811465&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811465
10.1063/1.4811465
SEARCH_EXPAND_ITEM