1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Highly efficient -1st-order reflection in Littrow mounted dielectric double-groove grating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4811466
1.
1. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, IEEE Photon. Technol. Lett. 12, 759 (2000).
http://dx.doi.org/10.1109/68.853491
2.
2. J. Kim, P. K. Kondratko, S. L. Chuang, G. Walter, and N. Holonyak, Jr., Appl. Phys. Lett. 90, 211102 (2007).
http://dx.doi.org/10.1063/1.2741118
3.
3. J. Neauport, N. Bonod, S. Hocquet, S. Palmier, and G. Dupuy, Opt. Express 18, 23776 (2010).
http://dx.doi.org/10.1364/OE.18.023776
4.
4. T. A. Strasser and M. C. Gupta, Appl. Opt. 33, 3220 (1994).
http://dx.doi.org/10.1364/AO.33.003220
5.
5. Y. Chen and W. Liu, Opt. Lett. 37, 4 (2012).
http://dx.doi.org/10.1364/OL.37.000004
6.
6. S. S. Wang and R. Magnusson, Appl. Phys. Lett. 61, 1022 (1992).
7.
7. R. Magnusson and S. S. Wang, Appl. Opt. 32, 2606 (1993).
http://dx.doi.org/10.1364/AO.32.002606
8.
8. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Opt. Lett. 23, 700 (1998).
http://dx.doi.org/10.1364/OL.23.000700
9.
9. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, J. Opt. Soc. Am. A 17, 1221 (2000).
http://dx.doi.org/10.1364/JOSAA.17.001221
10.
10. D. K. Jacob, S. C. Dunn, and M. G. Moharam, Opt. Lett. 26, 1749 (2001).
http://dx.doi.org/10.1364/OL.26.001749
11.
11. D. K. Jacob, S. C. Dunn, and M. G. Moharam, Appl. Opt. 41, 1241 (2002).
http://dx.doi.org/10.1364/AO.41.001241
12.
12. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, and B. W. Shore, Opt. Lett. 20, 940 (1995).
http://dx.doi.org/10.1364/OL.20.000940
13.
13. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bodefeld, W. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, Appl. Opt. 38, 6257 (1999).
http://dx.doi.org/10.1364/AO.38.006257
14.
14. H. Wei and L. Li, Appl. Opt. 42, 6255 (2003).
http://dx.doi.org/10.1364/AO.42.006255
15.
15. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, O. Parriaux, S. Tonchev, and M. Abdou Ahmed, Opt. Express 13, 3230 (2005).
http://dx.doi.org/10.1364/OPEX.13.003230
16.
16. A. Hu, C. Zhou, H. Cao, J. Wu, J. Yu, and W. Jia, J. Opt. 14, 055705 (2012).
http://dx.doi.org/10.1088/2040-8978/14/5/055705
17.
17. H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, and Y. Takeda, Opt. Lett. 35, 3973 (2010).
http://dx.doi.org/10.1364/OL.35.003973
18.
18. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 4, 466 (2010).
http://dx.doi.org/10.1038/nphoton.2010.116
19.
19. R. Abdolvand and F. Ayazi, Sensors Actuators A 144, 109116 (2008).
http://dx.doi.org/10.1016/j.sna.2007.12.026
20.
20. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
http://dx.doi.org/10.1364/JOSA.71.000811
21.
21. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
http://dx.doi.org/10.1364/JOSA.72.001385
22.
22. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
http://dx.doi.org/10.1364/JOSAA.12.001068
23.
23. P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996).
http://dx.doi.org/10.1364/JOSAA.13.000779
24.
24. J. Zheng, C. Zhou, J. Feng, and B. Wang, Opt. Lett. 33, 1554 (2008).
http://dx.doi.org/10.1364/OL.33.001554
25.
25. L. Li, J. Opt. Soc. Am. 14, 2758 (1997).
http://dx.doi.org/10.1364/JOSAA.14.002758
26.
26. T. Clausnitzer, T. Kampfe, E.-B. Kley, A. Tunnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, Opt. Express 13, 10448 (2005).
http://dx.doi.org/10.1364/OPEX.13.010448
27.
27. P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.2907
28.
28. P. Lalanne, J. P. Hugonin, and P. Chavel, J. Lightw. Technol. 24, 2442 (2006).
http://dx.doi.org/10.1109/JLT.2006.874555
29.
29. B. Wang, C. Zhou, S. Wang, and J. Feng, Opt. Lett. 32, 1299 (2007).
http://dx.doi.org/10.1364/OL.32.001299
30.
30. J. Feng, C. Zhou, J. Zheng, and B. Wang, Opt. Commun. 281, 5298 (2008).
http://dx.doi.org/10.1016/j.optcom.2008.07.075
31.
31. H. Iizuka, N. Engheta, H. Fujikawa, and K. Sato, Micro. Opt. Tech. Lett. 52, 1362 (2010).
http://dx.doi.org/10.1002/mop.25163
32.
32. H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, and Y. Takeda, Appl. Phys. Lett. 97, 053108 (2010).
http://dx.doi.org/10.1063/1.3476349
33.
33. CST Microwave Studio 2012, http://www.cst.com.
34.
34. V. Mikhailov, P. Bayvel, and E. G. Churin, Elect. Lett. 36, 1640 (2000).
http://dx.doi.org/10.1049/el:20001148
35.
35. B. Vuong, C. Sun, M. K. Harduar, A. Mariampillai, K. Isamoto, C. Chong, B. A. Standish, and V. X. D. Yang, Conf. Proc. IEEE Eng. Med. Biol. Soc. (Boston, 2011), p. 6134.
36.
36. F. Capaccioni, M. C. De Sanctis, G. Filacchione, G. Piccioni, E. Ammannito, L. Tommasi, I. Ficai Veltroni, M. Cosi, S. Debei, L. Calamai, and E. Flamini, IEEE Trans. Geosci. Remote Sens. 48, 3932 (2010).
37.
37. C. C. Hsu and T. S. Liu Conf. Proc. Sens. Tech. (Palmerston North, New Zealand, 2011), p. 370.
38.
38. Z. D. Huang, S. S. Li, Z. J. Wu, F. Xu, W. Hu, and Y. Q. Lu, IEEE Photon. Technol. Lett. 23, 1829 (2011).
http://dx.doi.org/10.1109/LPT.2011.2170059
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811466
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Configuration and (b) equivalent circuit of the Littrow mounted double-groove grating. (c) Three mode profiles ( = 0, 1, & 2) for one period are presented. (dimensions; = 895 nm, = 200 nm, = 300 nm, = 360 nm, & = 1030 nm, refractive indexes; = 1.45 & = 3.48, and diffraction angles; = = 60° & = = 36.7° at λ = 1550 nm operating wavelength).

Image of FIG. 2.

Click to view

FIG. 2.

Coupling coefficients of three modes propagating in the upward (+) and downward (-) directions ( = 0, 1, & 2) and the summation of those modes for (a) the 0th-order reflection , (b) -1st-order reflection , (c) 0th-order transmission , and (d) -1st-order transmission . (blue closed circle: =0,”+”, blue open circle: =0,”-”, pink closed square: =1,”+”, pink open square: =1,”-”, green closed triangle: =2,”+”, green open triangle: =2,”-”, black cross: summation, red open diamond: incidence).

Image of FIG. 3.

Click to view

FIG. 3.

Wavelength characteristic of diffraction efficiencies in the Littrow mounted double-groove grating. Curves are obtained using the modal analysis. Dots are the results of the CST Microwave Studio™ simulation.

Image of FIG. 4.

Click to view

FIG. 4.

Incident angle dependency of diffraction efficiencies in the Littrow mounted double-groove grating. Curves are obtained using the modal analysis. Dots are the results of the CST Microwave Studio™ simulation.

Image of FIG. 5.

Click to view

FIG. 5.

Snap shot of electromagnetic field distributions at 1550 nm obtained by the CST Microwave Studio™ simulation. (a) +60° incidence (magnetic field) (b) -60° incidence (magnetic field) (c) +60° incidence (electric field) (d) -60° incidence (electric field).

Tables

Generic image for table

Click to view

Table I.

Scattering parameters of the four-port device with an accuracy of 0.1%. Port numbers are assigned in Fig.1.

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4811466
2013-06-12
2014-04-25

Abstract

We show that in a silicon double-groove grating with two different groove widths per period attached on top of a semi-infinite SiO substrate, almost 100% reflectivity is achieved for the -1st-order reflection with an incident angle of 60° in the Littrow mounting condition. The modal analysis reveals that modes propagating in the upward and downward directions have nearly the same amplitudes at resonance. They are added constructively for the -1st-order reflection and destructively for the 0th-order reflection and the -1st-order and 0th-order transmission. The asymmetric structure with a dielectric material poses a unique feature as a four port device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4811466.html;jsessionid=5lmdbdvop92rj.x-aip-live-01?itemId=/content/aip/journal/adva/3/6/10.1063/1.4811466&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient -1st-order reflection in Littrow mounted dielectric double-groove grating
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4811466
10.1063/1.4811466
SEARCH_EXPAND_ITEM