1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Influence of film thickness and air exposure on the transport gap of manganese phthalocyanine
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4812230
1.
1. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, and A. Fert, Nature Physics 6, 615 (2010).
http://dx.doi.org/10.1038/nphys1688
2.
2. C. G. Barraclough, R. L. Martin, and S. Mitra, J. Chem. Phys. 53, 1638 (1970).
http://dx.doi.org/10.1063/1.1674236
3.
3. N. Ishikawa, Struct. Bond. 135, 211 (2010).
http://dx.doi.org/10.1007/978-3-642-04752-7
4.
4. S. Heutz, C. Mitra, W. Wu, A. J. Fisher, A. Kerridge, M. Stoneham, T. H. Harker, J. Gardener, H.-H. Tseng, T. S. Jones, C. Renner, and G. Aeppli, Adv. Mater. 19, 3618 (2007).
http://dx.doi.org/10.1002/adma.200701458
5.
5. Y. Taguchi, T. Miyake, S. Margadonna, K. Kato, K. Prassides, and Y. Iwasa, J. Am. Chem. Soc. 128, 3313 (2006).
http://dx.doi.org/10.1021/ja0582657
6.
6. X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou, J. Chem. Phys. 132, 054703 (2010).
http://dx.doi.org/10.1063/1.3302258
7.
7. M. Grobosch, B. Mahns, C. Loose, R. Friedrich, C. Schmidt, J. Kortus, and M. Knupfer, Chem. Phys. Lett. 505, 122 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.02.039
8.
8. Y.-S. Fu, S.-H. Ji, X. Chen, X.-C. Ma, R. Wu, C.-C. Wang, W.-H. Duan, X.-H. Qui, B. Sun, P. Zhang, J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett. 99, 256601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.256601
9.
9. A. Strozecka, M. Soriano, J. I. Pascual, and J. J. Palacios, Phys. Rev. Lett. 109, 147202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.147202
10.
10. R. Friedrich, T. Hahn, J. Kortus, M. Fronk, F. Haidu, G. Salvan, D. R. T. Zahn, M. Schlesinger, M. Mehring, F. Roth, B. Mahns, and M. Knupfer, J. Chem. Phys. 136, 064704 (2012).
http://dx.doi.org/10.1063/1.3683253
11.
11. I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal Jr., Chem. Phys. Lett. 327, 181 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00882-4
12.
12. D. R. T. Zahn, G. N. Gavrila, and M. Gorgoi, Chem. Phys. 325, 99 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.02.003
13.
13. M. Grobosch, V. Yu. Aristov, O. V. Molodtsova, C. Schmidt, B. P. Doyle, S. Nannarone, and M. Knupfer, J. Phys. Chem. C 113, 13219 (2009).
http://dx.doi.org/10.1021/jp901731y
14.
14. M. Grobosch, C. Schmidt, R. Kraus, and M. Knupfer, Org. Electron. 11, 1483 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.06.006
15.
15. H. Yoshida, K. Tsutsumi, and N. Sato, J. Electron Spectrosc. 121, 83 (2001).
http://dx.doi.org/10.1016/S0368-2048(01)00328-0
16.
16. E. E. Koch, Y. Jugnet, and F. J. Himpsel, Chem. Phys. Lett. 116, 7 (1985).
http://dx.doi.org/10.1016/0009-2614(85)80115-9
17.
17. R. Kraus, M. Grobosch, and M. Knupfer, Chem. Phys. Lett. 469, 121 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.12.090
18.
18. K. R. Rajesh and C. S. Menon, Mater. Lett. 51, 266 (2001).
http://dx.doi.org/10.1016/S0167-577X(01)00302-0
19.
19. K. R. Rajesh and C. S. Menon, Eur. Phys. J. B 47, 171 (2005).
http://dx.doi.org/10.1140/epjb/e2005-00317-x
20.
20. A. Arshak, S. Zleetni, and K. Arshak, Sensors 2, 174 (2002).
http://dx.doi.org/10.3390/s20500174
21.
21. A. Günsel, M. Kandaz, F. Yakuphanoglu, and W. A. Farooq, Synth. Met. 161, 1477 (2011).
http://dx.doi.org/10.1016/j.synthmet.2011.04.006
22.
22. S.-I. Yanagiya, J. Morimoto, N. Goto, and A. S. Helmy, Proc. of SPIE 7413, 74130O (2009).
http://dx.doi.org/10.1117/12.824200
23.
23. F. Djeghloul, F. Ibrahim, M. Cantoni, M. Bowen, L. Joly, S. Boukari, P. Ohresser, F. Bertran, P. Le Fevre, P. Thakur, F. Scheurer, T. Miyamachi, R. Mattana, P. Seneor, A. Jaafar, C. Rinaldi, S. Javaid, J. Arabski, J.-P Kappler, W. Wulfhekel, N. B. Brookes, R. Bertacco, A. Taleb-Ibrahimi, M. Alouani, E. Beaurepaire, and W. Weber, Scientific Reports 3, 1272 (2013).
http://dx.doi.org/10.1038/srep01272
24.
24. N. Atodiresei, J. Brede, P. Lazic, V. Caciuc, G. Hoffmann, R. Wiesendanger, and S. Blügel, Phys. Rev. Lett. 105, 066601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.066601
25.
25. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
26.
26. M. Gorgoi and D. R. T. Zahn, Org. Electron. 6, 168 (2005).
http://dx.doi.org/10.1016/j.orgel.2005.05.001
27.
27. R. Hesse, T. Chasse, and R. Szargan, Anal. Bioanal. Chem. 375, 856 (2003).
28.
28. B. Johs and J. S. Hale, Phys. Status Solidi A 205, 715 (2008).
http://dx.doi.org/10.1002/pssa.200777754
29.
29. O. D. Gordan, M. Friedrich, and D. R. T. Zahn, Org. Electron. 5, 291 (2004).
http://dx.doi.org/10.1016/j.orgel.2004.10.001
30.
30. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
31.
31. E. V. Tsiper, Z. G. Soos, W. Gao, and A. Kahn, Chem. Phys. Lett. 360, 47 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00774-1
32.
32. J. C. Scott, J. Vac. Sci. Technol. A 21, 521 (2003).
http://dx.doi.org/10.1116/1.1559919
33.
33. M. Knupfer and G. Paasch, J. Vac. Sci. Technol. A 23, 1072 (2005).
http://dx.doi.org/10.1116/1.1885021
34.
34. F. Flores, J. Ortega, and H. Vazquez, Phys. Chem. Chem. Phys. 11, 8658 (2009).
http://dx.doi.org/10.1039/b902492c
35.
35. F. Petraki, H. Peisert, P. Hoffmann, J. Uihlein, M. Knupfer, and T. Chasse, J. Phys. Chem. C 116, 5121 (2012).
http://dx.doi.org/10.1021/jp211445n
36.
36. M. Kozlik, S. Paulke, M. Gruenewald, R. Forker, and T. Fritz, Org. Electron. 13, 3291 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.09.030
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4812230
Loading
/content/aip/journal/adva/3/6/10.1063/1.4812230
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4812230
2013-06-19
2014-11-24

Abstract

The interface formation between manganese phthalocyanine (MnPc) and cobalt was investigated combining ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The transport band gap of the MnPc increases with the film thickness up to a value of (1.2 ± 0.3) eV while the optical band gap as determined from spectroscopic ellipsometry amounts to 0.5 eV. The gap values are smaller compared to other phthalocyanines due to metallic Mn 3d states close to the Fermi level. The transport band gap was found to open upon air exposure as a result of the disappearance of the occupied 3d electronic states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4812230.html;jsessionid=2mad9w5axo7fw.x-aip-live-02?itemId=/content/aip/journal/adva/3/6/10.1063/1.4812230&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of film thickness and air exposure on the transport gap of manganese phthalocyanine
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4812230
10.1063/1.4812230
SEARCH_EXPAND_ITEM