1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4812699
1.
1. M. P. Czech, Cell 100, 603 (2000).
http://dx.doi.org/10.1016/S0092-8674(00)80696-0
2.
2. S. McLaughlin and D. Murray, Nature 438, 605 (2005).
http://dx.doi.org/10.1038/nature04398
3.
3. N. M. Goldenberg and B. E. Steinberg, Cancer Res. 70, 1277 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-09-2905
4.
4. G. Di Paolo and P. De Camilli, Nature 443, 651 (2006).
http://dx.doi.org/10.1038/nature05185
5.
5. M. A. Lemmon, Traffic 4, 201 (2003).
http://dx.doi.org/10.1034/j.1600-0854.2004.00071.x
6.
6. P. Mitrakos and P. M. Macdonald, Biomacromolecules 1, 365 (2000).
http://dx.doi.org/10.1021/bm000029v
7.
7. A. Gambhir, G. Hangyas-Mihalyne, I. Zaitseva, D. S. Cafiso, J. Y. Wang, D. Murray, S. N. Pentyala, S. O. Smith, and S. McLaughlin, Biophys. J. 86, 2188 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74278-2
8.
8. S. Tzlil and A. Ben-Shaul, Biophys. J. 89, 2972 (2005).
http://dx.doi.org/10.1529/biophysj.105.068387
9.
9. J. E. Vance and R. Steenbergen, Prog. Lipid Res. 44, 207 (2005).
http://dx.doi.org/10.1016/j.plipres.2005.05.001
10.
10. G. Khelashvili, H. Weinstein, and D. Harries, Biophys. J. 94, 2580 (2008).
http://dx.doi.org/10.1529/biophysj.107.120667
11.
11. C. D. Lorenz, J. Faraudo, and A. Travesset, Langmuir 24, 1654 (2008).
http://dx.doi.org/10.1021/la703550t
12.
12. U. Golebiewska, A. Gambhir, G. Hangyas-Mihalyne, I. Zaitseva, J. Radler, and S. McLaughlin, Biophys. J. 91, 588 (2006).
http://dx.doi.org/10.1529/biophysj.106.081562
13.
13. U. Golebiewska, M. Nyako, W. Woturski, I. Zaitseva, and S. McLaughlin, Mol. Biol. Cell 19, 1663 (2008).
http://dx.doi.org/10.1091/mbc.E07-12-1208
14.
14. D. W. Hilgemann, Pflug. Arch. Eur. J. Phy. 455, 55 (2007).
http://dx.doi.org/10.1007/s00424-007-0280-9
15.
15. X. M. Cai, D. Lietha, D. F. Ceccarelli, A. V. Karginov, Z. Rajfur, K. Jacobson, K. M. Hahn, M. J. Eck, and M. D. Schaller, Mol. Cell. Biol. 28, 201 (2008).
http://dx.doi.org/10.1128/MCB.01324-07
16.
16. G. Cicchetti, M. Biernacki, J. Farquharson, and P. G. Allen, Biochemistry 43, 1939 (2004).
http://dx.doi.org/10.1021/bi035480w
17.
17. H. D. Yan, C. Villalobos, and R. Andrade, J. Neurosci. 29, 10038 (2009).
http://dx.doi.org/10.1523/JNEUROSCI.1042-09.2009
18.
18. C. G. Ferguson, R. D. James, C. S. Bigman, D. A. Shepard, Y. Abdiche, P. S. Katsamba, D. G. Myszka, and G. D. Prestwich, Bioconjugate Chem. 16, 1475 (2005).
http://dx.doi.org/10.1021/bc050197q
19.
19. M. Mollapour, J. P. Phelan, S. H. Millson, P. W. Piper, and F. T. Cooke, Biochem. J. 395, 73 (2006).
http://dx.doi.org/10.1042/BJ20051765
20.
20. M. Santin, W. Rhys-Williams, J. O’Reilly, M. C. Davies, K. Shakesheff, W. G. Love, A. W. Lloyd, and S. P. Denyer, J. R. Soc. Interface 3, 277 (2006).
http://dx.doi.org/10.1098/rsif.2005.0088
21.
21. Y. J. Im, I. Y. Perera, I. Brglez, A. J. Davis, J. Stevenson-Paulik, B. Q. Phillippy, E. Johannes, N. S. Allen, and W. F. Boss, Plant Cell 19, 1603 (2007).
http://dx.doi.org/10.1105/tpc.107.051367
22.
22. D. Murray, A. Arbuzova, B. Honig, and S. McLaughlin, Curr. Top. Membr. 52, 277 (2002).
http://dx.doi.org/10.1016/S1063-5823(02)52012-3
23.
23. I. Porcar, R. Garcia, C. Gomez, A. Campos, and C. Abad, Polymer 38, 5107 (1997).
http://dx.doi.org/10.1016/S0032-3861(97)00061-X
24.
24. I. Porcar, R. Garcia, V. Soria, and A. Campos, Polymer 38, 3545 (1997).
http://dx.doi.org/10.1016/S0032-3861(96)00915-9
25.
25. I. Porcar, R. Garcia, V. Soria, and A. Campos, Polymer 38, 3553 (1997).
http://dx.doi.org/10.1016/S0032-3861(96)00916-0
26.
26. I. Porcar, C. M. Gomez, E. Perezpaya, V. Soria, and A. Campos, Polymer 35, 4627 (1994).
http://dx.doi.org/10.1016/0032-3861(94)90814-1
27.
27. L. Thomas, H. A. Scheidt, A. Bettio, A. G. Beck-Sickinger, D. Huster, and O. Zschornig, Eur. Biophys. J. Biophy. 38, 663 (2009).
http://dx.doi.org/10.1007/s00249-009-0423-3
28.
28. J. Pokorny, AIP Adv. 2, (2012).
http://dx.doi.org/10.1063/1.3699057
29.
29. L. Rusu, A. Gambhir, S. McLaughlin, and J. Radler, Biophys. J. 87, 1044 (2004).
http://dx.doi.org/10.1529/biophysj.104.039958
30.
30. J. Y. Wang, A. Gambhir, G. Hangyas-Mihalyne, D. Murray, U. Golebiewska, and S. McLaughlin, J. Biol. Chem. 277, 34401 (2002).
http://dx.doi.org/10.1074/jbc.M203954200
31.
31. U. Dietrich, P. Kruger, T. Gutberlet, and J. A. Kas, Bba-Biomembranes 1788, 1474 (2009).
http://dx.doi.org/10.1016/j.bbamem.2009.04.001
32.
32. A. Honda, M. Nogami, T. Yokozeki et al., Cell 99, 521 (1999).
http://dx.doi.org/10.1016/S0092-8674(00)81540-8
33.
33. E. G. Tall, I. Spector, S. N. Pentyala, I. Bitter, and M. J. Rebecchi, Curr. Biol. 10, 743 (2000).
http://dx.doi.org/10.1016/S0960-9822(00)00541-8
34.
34. S. A. Watt, G. Kular, I. N. Fleming, C. P. Downes, and J. M. Lucocq, Biochem. J. 363, 657 (2002).
http://dx.doi.org/10.1042/0264-6021:3630657
35.
35. S. McLaughlin, J. Y. Wang, A. Gambhir, and D. Murray, Annu. Rev. Bioph. Biom. 31, 151 (2002).
http://dx.doi.org/10.1146/annurev.biophys.31.082901.134259
36.
36. W. D. Heo, T. Inoue, W. S. Park, M. L. Kim, B. O. Park, T. J. Wandless, and T. Meyer, Science 314, 1458 (2006).
http://dx.doi.org/10.1126/science.1134389
37.
37. A. Shafir and D. Andelman, Phys. Rev. E 74, (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021803
38.
38. F. Vial, S. Rabhi, and C. Tribet, Langmuir 21, 853 (2005).
http://dx.doi.org/10.1021/la048039v
39.
39. S. Tzlil, D. Murray, and A. Ben-Shaul, Biophys. J. 95, 1745 (2008).
http://dx.doi.org/10.1529/biophysj.108.132522
40.
40. E. Haleva, N. Ben-Tal, and H. Diamant, Biophys. J. 86, 2165 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74276-9
41.
41. S. May, D. Harries, and A. Ben-Shaul, Physical Review Letters 89 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.268102
42.
42. E. C. Mbamala, A. Ben-Shaul, and S. May, Biophys. J. 88, 1702 (2005).
http://dx.doi.org/10.1529/biophysj.104.048132
43.
43. R. S. Dias and P. Linse, Biophys. J. 94, 3760 (2008).
http://dx.doi.org/10.1529/biophysj.107.118877
44.
44. S. Loew, A. Hinderliter, and S. May, J. Chem. Phys. 130 (2009).
http://dx.doi.org/10.1063/1.3063117
45.
45. R. S. Dias, A. Pais, P. Linse, M. G. Miguel, and B. Lindman, J. Phys. Chem. B 109, 11781 (2005).
http://dx.doi.org/10.1021/jp050158b
46.
46. X. Z. Duan, R. Zhang, Y. Q. Li, T. F. Shi, L. J. An, and Q. R. Huang, J. Phys. Chem. B 117, 989 (2013).
http://dx.doi.org/10.1021/jp310017j
47.
47. See Supplementary Material Document No. http://dx.doi.org/10.1063/1.4812699 for the number of segregated PIP2, the MSD of PIP2 segregated lipids in 50 Monte Carlo steps (gl-50), the MSD of polyelectrolyte's mass-center of 50 Monte Carlo steps (gP-50), and the MSD of segregated PIP2 lipid microdomains’ mass-center of 50 Monte Carlo steps (gc-50) in solution with ionic strength of 0.1 and 0.001 M. [Supplementary Material]
48.
48. V. Y. Kiselev, D. Marenduzzo, and A. B. Goryachev, Biophys. J. 100, 1261 (2011).
http://dx.doi.org/10.1016/j.bpj.2011.01.025
49.
49. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
http://dx.doi.org/10.1063/1.1699114
50.
50. K. Kawasaki, C. Domb, and M. S. Green, editors (Academic Press, New York, 1972) Vol. 2.
51.
51. N. Jan, T. Lookman, and D. A. Pink, Biochemistry 23, 3227 (1984).
http://dx.doi.org/10.1021/bi00309a017
52.
52. P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).
http://dx.doi.org/10.1063/1.1699180
53.
53. B. Maier and J. O. Radler, Phys. Rev. Lett. 82, 1911 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1911
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4812699
Loading
/content/aip/journal/adva/3/6/10.1063/1.4812699
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4812699
2013-06-26
2014-09-23

Abstract

We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl–choline, PC) and multivalent anionic (phosphatidylinositol, PIP) lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4812699.html;jsessionid=7q8nm0afoqghn.x-aip-live-06?itemId=/content/aip/journal/adva/3/6/10.1063/1.4812699&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4812699
10.1063/1.4812699
SEARCH_EXPAND_ITEM