Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid St. Commun. 115(5), 217 (2000).
2. M. A. Subramanian, D. Li, N. Duan, B. A. Reisnet, and A. W. Sleight, J. Solid St. Chem. 151(2), 323 (2000).
3. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 27(293), 673 (2001).
4. M. A. Subramanian and A. W. Sleight, Solid St. Sciences 4, 347 (2002).
5. D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, Appl. Phys. Lett. 80, 2153 (2002).
6. S-Y Chung, I.-D. Kim, and S.-J. L. Kang, Nature Mat. 3, 774 (2004).
7. V. Brice, G. Gruener, J. Wolfman, K. Fatayeyeva, M. Tablellout, M. Gervais, and F. Gervais, Mat. Sci. Eng. B 129, 135 (2006).
8. P. Lukenheimer, R. Ficht, S. G. Ebbinhaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004).
9. P. Lukenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Vlokov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).
10. S. Krohns, P. Lukenheimer, S. G. Ebbinghaus, and A. Loidl, Appl. Phys. Lett. 91, 022910 (2007).
11. S. Krohns, P. Lukenheimer, S. G. Ebbinghaus, and A. Loidl, Appl. Phys. Lett. 91, 09902 (2007).
12. G. Deng, T. Yamada, and P. Murralt, Appl. Phys. Lett. 91, 202903 (2007).
13. Lajun Liu, Liang Fang, Yanmin Huang, Yinhua Li, and Shi Damping, J. Appl. Phys. 110, 094101 (2011).
14. S. Y. Chung, IL-D00 Kim, and S.-J. L. Kang, Nature Mats. 3,774 (2004).
15. R. K. Pandey, William A. Stapleton, Ivan Sutanto, Amanda A. Scantlin, and Sidney Lin, J. Electronic Mats. (in review).
16. A. E. Smith, T. G. Calvarese, A. W. Sleight, and M. A. Subramanian, J. Solid St. Chem. 182, 409 (2009).
17. S. O. Kasap, Principles of Electronic Materials and Devices, Second Edition, (2002).
18. Andrey A. Levchenko, Loic Marchen, Yosuke Moriya, Hitoshi Kawaji, Torru Atake, Sophie Guillemet-Fritsch, Bernard Durand, and Alexandra Novrotsky, J. Mats. Res., 23(6), 1522, (2008).
19. S. Krohns, J. Lu, P. Luckenheimer, V. Brize, C. Autret-Lambert, M. Grevais, F. Gervais, F. Bouree, F. Porcher, and A. Loidl, Eur. Phys. J. B 72, 173 (2009).
20. Thomas Christen and Martin W. Carlen, J. Power Sources, 91, 210216, (2000).

Data & Media loading...


Article metrics loading...



Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd