1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Applications of CCTO supercapacitor in energy storage and electronics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/6/10.1063/1.4812709
1.
1. A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid St. Commun. 115(5), 217 (2000).
http://dx.doi.org/10.1016/S0038-1098(00)00182-4
2.
2. M. A. Subramanian, D. Li, N. Duan, B. A. Reisnet, and A. W. Sleight, J. Solid St. Chem. 151(2), 323 (2000).
http://dx.doi.org/10.1006/jssc.2000.8703
3.
3. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 27(293), 673 (2001).
http://dx.doi.org/10.1126/science.1061655
4.
4. M. A. Subramanian and A. W. Sleight, Solid St. Sciences 4, 347 (2002).
http://dx.doi.org/10.1016/S1293-2558(01)01262-6
5.
5. D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, Appl. Phys. Lett. 80, 2153 (2002).
http://dx.doi.org/10.1063/1.1463211
6.
6. S-Y Chung, I.-D. Kim, and S.-J. L. Kang, Nature Mat. 3, 774 (2004).
http://dx.doi.org/10.1038/nmat1238
7.
7. V. Brice, G. Gruener, J. Wolfman, K. Fatayeyeva, M. Tablellout, M. Gervais, and F. Gervais, Mat. Sci. Eng. B 129, 135 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.01.004
8.
8. P. Lukenheimer, R. Ficht, S. G. Ebbinhaus, and A. Loidl, Phys. Rev. B 70, 172102 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.172102
9.
9. P. Lukenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Vlokov, and A. Loidl, Phys. Rev. B 66, 052105 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.052105
10.
10. S. Krohns, P. Lukenheimer, S. G. Ebbinghaus, and A. Loidl, Appl. Phys. Lett. 91, 022910 (2007).
http://dx.doi.org/10.1063/1.2757098
11.
11. S. Krohns, P. Lukenheimer, S. G. Ebbinghaus, and A. Loidl, Appl. Phys. Lett. 91, 09902 (2007).
12.
12. G. Deng, T. Yamada, and P. Murralt, Appl. Phys. Lett. 91, 202903 (2007).
http://dx.doi.org/10.1063/1.2814043
13.
13. Lajun Liu, Liang Fang, Yanmin Huang, Yinhua Li, and Shi Damping, J. Appl. Phys. 110, 094101 (2011).
http://dx.doi.org/10.1063/1.3658258
14.
14. S. Y. Chung, IL-D00 Kim, and S.-J. L. Kang, Nature Mats. 3,774 (2004).
http://dx.doi.org/10.1038/nmat1238
15.
15. R. K. Pandey, William A. Stapleton, Ivan Sutanto, Amanda A. Scantlin, and Sidney Lin, J. Electronic Mats. (in review).
16.
16. A. E. Smith, T. G. Calvarese, A. W. Sleight, and M. A. Subramanian, J. Solid St. Chem. 182, 409 (2009).
http://dx.doi.org/10.1016/j.jssc.2008.10.037
17.
17. S. O. Kasap, Principles of Electronic Materials and Devices, Second Edition, (2002).
18.
18. Andrey A. Levchenko, Loic Marchen, Yosuke Moriya, Hitoshi Kawaji, Torru Atake, Sophie Guillemet-Fritsch, Bernard Durand, and Alexandra Novrotsky, J. Mats. Res., 23(6), 1522, (2008).
http://dx.doi.org/10.1557/JMR.2008.0201
19.
19. S. Krohns, J. Lu, P. Luckenheimer, V. Brize, C. Autret-Lambert, M. Grevais, F. Gervais, F. Bouree, F. Porcher, and A. Loidl, Eur. Phys. J. B 72, 173 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00349-2
20.
20. Thomas Christen and Martin W. Carlen, J. Power Sources, 91, 210216, (2000).
http://dx.doi.org/10.1016/S0378-7753(00)00474-2
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4812709
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Comparative representation of ceramic processing parameters Legend :1. Ratio CCTO: PVA by weight; 2. Die Temperature in °C; 3. Force in pounds; 4. Time of pressing in hours; 5. Annealing temperature in °C; and 6. Annealing time in hours.

Image of FIG. 2.

Click to view

FIG. 2.

Density vs. pressure for CCTO ceramic.

Image of FIG. 3.

Click to view

FIG. 3.

XRD diffractogram of CCTO ceramic.

Image of FIG. 4.

Click to view

FIG. 4.

SEM micrograph of B2S2 sample.

Image of FIG. 5.

Click to view

FIG. 5.

Temperature dependence of conductivity (σ) for CCTO ceramic.

Image of FIG. 6.

Click to view

FIG. 6.

Temperature dependence of Seebeck coefficient.

Image of FIG. 7.

Click to view

FIG. 7.

Temperature dependence of linear dimensional change.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Frequency dependence of permittivity for B1S2-1, B2S2-an, B2S3-1,B3S1-2 and B3S2-4. (b) Frequency dependence of permittivity for B1S2-1, B2S2-1 and B2S2-an.

Image of FIG. 9.

Click to view

FIG. 9.

(a) Frequency dependence of loss tangent for of B3S2-4, B3S1-2, B3S1-2, B2S2-an and B1S2-1. (b) Frequency dependence of loss tangent for B1S2-1, B2S2-1 and B2S2-an.

Image of FIG. 10.

Click to view

FIG. 10.

Interdependence of loss tangent and permittivity at 1 kHz for all samples.

Image of FIG. 11.

Click to view

FIG. 11.

Frequency dependence of energy density (Ω) of B2S2-1 with different dielectric thickness.

Image of FIG. 12.

Click to view

FIG. 12.

(a) Comparison between the permittivity of CCTO and BT (BaTiO3). (b) Comparison between loss tangent of CCTO and BT (BaTiO3).

Tables

Generic image for table

Click to view

Table I.

Elemental analysis of CCTO ceramic.

Generic image for table

Click to view

Table II.

Permittivity and loss tangent of selected CCTO samples.

Loading

Article metrics loading...

/content/aip/journal/adva/3/6/10.1063/1.4812709
2013-06-25
2014-04-23

Abstract

Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/6/1.4812709.html;jsessionid=1ml7cka7axc5e.x-aip-live-01?itemId=/content/aip/journal/adva/3/6/10.1063/1.4812709&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Applications of CCTO supercapacitor in energy storage and electronics
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/6/10.1063/1.4812709
10.1063/1.4812709
SEARCH_EXPAND_ITEM