1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mesoscopic hydro-thermodynamics of phonons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/7/10.1063/1.4813835
1.
1.The Editors Scientific American 302, 1 68-73 (2010).
2.
2. Z. M. Zhang, Nano/microscale heat-transfer (McGraw-Hill, New York, USA, 2007).
3.
3. D. Y. Tzou, Macro to microscale heat transport (Taylor and Francis, Washington, USA, 1997).
4.
4. I. Chowdhury et al., Nature Nanotech. 4(4), 235 (2009).
http://dx.doi.org/10.1038/nnano.2008.417
5.
5. R. Klein, “Introduction to Phonon Hydrodynamics,” in Nonequilibrium phonon dynamics, NATO ASI Series B, Vol. 124 (Plenum, New York, USA, 1985).
6.
6. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, Germany, 2010).
7.
7. R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Statistical Foundations of Irreversible Thermodynamics (Teubner-Bertelsmann Springer, Leipzig, Germany, 2000).
8.
8. Yu. L. Klimontovich, Theor. Math. Phys. 92, 909 (1992).
http://dx.doi.org/10.1007/BF01015557
9.
9. D. N. Zubarev, V. G. Morosov, I. P. Omelyan, and M. V. Tokarchuk, Theor. Math. Phys. 96, 997 (1994).
http://dx.doi.org/10.1007/BF01019063
10.
10. S. K. Belyaev, Phys.-Uspekhi 38, 287 (1995).
http://dx.doi.org/10.1070/PU1995v038n03ABEH000076
11.
11. J. H. Kreuzer, Nonequilibrium Thermodynamics and its Statistical Foundations (Oxford University Press, New York, USA, 1981).
12.
12. D. W. Mackowski, D. H. Papadopolous, and D. E. Roner, Phys. Fluids 11, 2108 (1999).
http://dx.doi.org/10.1063/1.870073
13.
13. T. Dedeurwaerdere, J. Casas-Vázquez, D. Jou, and G. Lebon, Phys. Rev. E 53, 498 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.498
14.
14. C. A. B. Silva, J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, “Mesoscopic Hydro-Thermodynamics: Foundations within a nonequilibrium statistical ensemble formalism,” Phys. Rev. E, submitted.
15.
15. A. I. Akhiezer and S. V. Peletminskii, Methods of Statistical Physics (Pergamon Press, Oxford, UK, 1981).
16.
16. L. Lauck, A. R. Vasconcellos, and R. Luzzi, Physica A 168, 789 (1990).
http://dx.doi.org/10.1016/0378-4371(90)90031-M
17.
17. D. N. Zubarev, V. G. Morosov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vols. 1 and 2 (Akademie-Wiley VCH, Berlin, Germany, 1996).
18.
18. R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Predictive Statistical Mechanics: A Nonequilibrium Ensemble Formalism (Kluwer Academic, Dordrecht, The Netherlands, 2002).
19.
19. R. Luzzi R, A. R. Vasconcellos, and J. G. Ramos, Rivista del Nuovo Cimento 29(2), 182 (2006).
20.
20. F. S. Vannucchi, A. R. Vasconcellos, and R. Luzzi, Intl. J. Modern Phys. B 23, 5283 (2009).
http://dx.doi.org/10.1142/S0217979209054284
21.
21. J. C. Maxwell, Phil. Trans. Roy. Soc. 157, 49 (1867).
http://dx.doi.org/10.1098/rstl.1867.0004
22.
22. J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, UK, 1960).
23.
23. A. M. Livshits, Biofizika 17, 4 (1972).
24.
24. H. Fröhlich, Adv. Electronics, Electron Physics, Vol. 53 (Academic Press, New York, USA, 1980), p. 82192.
25.
25. H. Haken, Synergetics (Springer, Berlin, Germany, 1978).
26.
26. G. Nicolis and I. Prigogine, Exploring complexity (Freeman Press, New York, USA, 1989).
27.
27. H. Fröhlich, Nature 228, 1093 (1970).
http://dx.doi.org/10.1038/2281093a0
28.
28. M. V. Mesquita, A. R. Vasconcellos, and R. Luzzi, Phys. Rev. E 48, 4049 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.4049
29.
29. A. F. Fonseca, M. V. Mesquita, A. R. Vasconcellos, and R. Luzzi, J. Chem. Phys. 112, 3967 (2000).
http://dx.doi.org/10.1063/1.481000
30.
30. J. Zu and J. F. Greenleaf, Ultrasound Med. Biol. 20, 403 (1999).
31.
31. M. V. Mesquita, A. R. Vasconcellos, and R. Luzzi, Phys. Rev. E 58, 7913 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.7913
32.
32. J. A. Kent et al., Phys. Rev. Lett. 96, 215504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.215504
33.
33. O. V. Misochko et al., Phys. Lett. A 321, 381 (2004).
http://dx.doi.org/10.1016/j.physleta.2003.11.063
34.
34. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 113, 113701 (2013).
http://dx.doi.org/10.1063/1.4795271
35.
35. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 108, 033716 (2010).
http://dx.doi.org/10.1063/1.3462501
36.
36. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations (Wiley Interscience, New York, USA, 1971).
37.
37. U. Fano, Rev. Mod. Phys. 29, 74 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.74
38.
38. N. N. Bogoliubov, Lectures in Quantum Statistics I (Gordon and Breach, New York, USA, 1967).
39.
39. N. N. Bogoliubov, Studies in statistical mechanics I, J. de Boer and G. E. Uhlenbeck, ed. (North Holland, Amsterdam, The Netherlands, 1962).
40.
40. G. E. Uhlenbeck, Lectures in Statistical Mechanics, M. Kac ed. (Am. Math. Soc., Providence, USA, 1963).
41.
41. J. R. Klauder and B. S. Skagerstam, Coherent states (World Scientific, Singapore, 1984).
42.
42. N. Hugenholtz, Application of field-theoretical methods to many-boson systems, Cargèse Lectures on theoretical physics, M. Lévy ed., 1962 (Benjamin, New York, USA, 1963).
43.
43. J. R. Madureira, A. R. Vasconcellos, and R. Luzzi, J. Chem. Phys. 108, 7580 (1998).
http://dx.doi.org/10.1063/1.476192
44.
44. H. Mori, Prog. Theor. Phys. 33, 423 (1965).
http://dx.doi.org/10.1143/PTP.33.423
45.
45. J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, J. Chem. Phys. 112, 2692 (2000).
http://dx.doi.org/10.1063/1.480843
46.
46. R. Balian, Y. Alhassed, and H. Reinhardt, Phys. Rep. 131, 1 (1986).
http://dx.doi.org/10.1016/0370-1573(86)90005-0
47.
47. S. P. Heims and E. T. Jaynes, Rev. Mod. Phys. 34, 143 (1962).
http://dx.doi.org/10.1103/RevModPhys.34.143
48.
48. L. D. Landau and E. M. Lifschitz, Theory of elasticity (Pergamon Press, Oxford, UK, 1986).
49.
49. P. M. Morse and H. Feshbach, Methods of theoretical physics (McGraw-Hill, New York, USA, 1953).
50.
50. R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 766 (1966);
http://dx.doi.org/10.1103/PhysRev.148.766
50.R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 778 (1966).
http://dx.doi.org/10.1103/PhysRev.148.778
51.
51. A. R. B. de Castro, A. R. Vasconcellos, and R. Luzzi, Transient analysis of thermal distortion in a silicon substrate on incidence of a single soft X-ray FEL pulse (Proc. SPIE, L. Juha, S. Bajt and R. A. London eds. Vol. 80770A 1-10, 2011).
52.
52.Visit the sites www.desy.de (DESY, Hamburg Germany), www.lcls.slac.stanford.edu (SLAC, Stanford USA), www.spring8.or.jp (Spring8, Hyogo Japan).
53.
53. S. Boutet, “High-resolution protein structure determination by serial femtosecond crystallography,” Science 337(6092), 362364 (2012).
http://dx.doi.org/10.1126/science.1217737
54.
54. J. N. Clark, L. Beitra, and G. Xiong, “Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals,” Science, May 23 (2013).
55.
55. R. DiGennaro and T. Swain, “Engineering for high heat loads on ALS beam lines,” NIMA 291, 313318 (1990).
http://dx.doi.org/10.1016/0168-9002(90)90078-K
56.
56. A. R. B. Castro, A. R. Vasconcellos, and R. Luzzi, Rev. Sci. Instrum. 81, 073102 (2010).
http://dx.doi.org/10.1063/1.3455203
57.
57. A. R. B. Castro, A. R. Vasconcellos, and R. Luzzi, Rev. Sci. Instrum. 82, 049901 (2011).
http://dx.doi.org/10.1063/1.3575590
58.
58. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, Eur. Phys. J. 86, 20040109 (2013).
59.
59. C. Guthy, C.-Y. Nam, and J. E. Fischer, J. Appl. Phys. 103, 64319 (2008).
http://dx.doi.org/10.1063/1.2894907
60.
60. C. Dames and G. Chen, in Thermoelectrics Handbook: Macro to Nano, D. M. Rowe ed. (CRC Taylor and Francis, Boca Raton, USA, 2006).
61.
61. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majundar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
62.
62. C. G. Rodrigues, A. R. Vasconcellos, and R. Luzzi, unpublished.
63.
63. C. G. Rodrigues, A. R. Vasconcellos, A. R. B. Castro, and R. Luzzi, unpublished.
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4813835
Loading
/content/aip/journal/adva/3/7/10.1063/1.4813835
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/7/10.1063/1.4813835
2013-07-10
2014-07-31

Abstract

A generalized Hydrodynamics, referred to as Mesoscopic Hydro-Thermodynamics, of phonons in semiconductors is presented. It involves the descriptions of the motion of the quasi-particle density and of the energy density. The hydrodynamic equations, which couple both types of movement via thermo-elastic processes, are derived starting with a generalized Peierls-Boltzmann kinetic equation obtained in the framework of a Non-Equilibrium Statistical Ensemble Formalism, providing such Mesoscopic Hydro-Thermodynamics. The case of a contraction in first order is worked out in detail. The associated Maxwell times are derived and discussed. The densities of quasi-particles and of energy are found to satisfy coupled Maxwell-Cattaneo-like (hyperbolic) equations. The analysis of thermo-elastic effects is done and applied to investigate thermal distortion in silicon mirrors under incidence of high intensity X-ray pulses in FEL facilities. The derivation of a generalized Guyer-Krumhansl equation governing the flux of heat and the associated thermal conductivity coefficient is also presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/7/1.4813835.html;jsessionid=a44tt3c769i2j.x-aip-live-06?itemId=/content/aip/journal/adva/3/7/10.1063/1.4813835&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mesoscopic hydro-thermodynamics of phonons
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4813835
10.1063/1.4813835
SEARCH_EXPAND_ITEM