1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Heteroepitaxial Ge-on-Si by DC magnetron sputtering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/7/10.1063/1.4813841
1.
1. A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of High-Quality p-MOSFET in Ge Grown Heteroepitaxially on Si,” IEEE Electron. Device Lett. 26(5), 311313 (2005).
http://dx.doi.org/10.1109/LED.2005.846578
2.
2. F. Schäfer, “High-mobility Si and Ge structures,” Semicond. Sci. Technol. 12, 15151549 (1997).
http://dx.doi.org/10.1088/0268-1242/12/12/001
3.
3. J. Wang and S. Lee, “Ge-Photodetectors for Si-based Optoelectronic Integration,” Sensors 11, 696718, 2011.
http://dx.doi.org/10.3390/s110100696
4.
4. J. Michel and J. Liu, “L. C. Kimnerling, High-performance Ge-on-Si photodetectors,” Nature Photon. 4, 527534, 2010.
http://dx.doi.org/10.1038/nphoton.2010.157
5.
5. S. Luryi and A. Kastalsky, “J. C. Bean, New infrared detector on a silicon chip,” IEEE Trans. Electron. Dev. ED-31, 11351139 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21676
6.
6. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si pin photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18, 24422444 (2006).
http://dx.doi.org/10.1109/LPT.2006.885623
7.
7. H. Luan, D. Lim, K. Lee, K. Chen, J. Sandland, K. Wada, and L. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75, 29092912 (1999).
http://dx.doi.org/10.1063/1.125187
8.
8. M. Garozzo, G. Conte, F. Evangelisti, and G. Vitali, “Heteroepitaxial growth of Ge on (111) Si by vacuum evaporation,” Appl. Phys. Lett. 41(11), 10701072 (1982).
http://dx.doi.org/10.1063/1.93404
9.
9. V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi, and C. Ferrari, “Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization,” Microelectron. Eng. 88, 526529 (2011).
http://dx.doi.org/10.1016/j.mee.2010.09.024
10.
10. Y. Ohmachi, T. Nishioka, and Y. Shinoda, “The heteroepitaxy of Ge on Si(100) by vacuum evaporation,” J. Appl. Physics 54, 54665469 (1983).
http://dx.doi.org/10.1063/1.332691
11.
11. G. Bajor, K. C. Cadien, M. A. Ray, J. E. Greene, and P. S. Vijayakumar, “Growth of high quality epitaxial Ge films on (100) Si by sputter deposition,” Appl. Phys. Lett. 40, 696 (1982).
http://dx.doi.org/10.1063/1.93239
12.
12. S. M. Pietralunga, M. Fere, M. Lanata, D. Piccinin, G. Radnoczi, F. Misjak, A. Lamperti, M. Martinelli, and P. M. Ossi, “Heteroepitaxial sputtered Ge on Si (100): Nanostructure and interface morphology,” EPL 88, 28005 (2009).
http://dx.doi.org/10.1209/0295-5075/88/28005
13.
13. Th. Höche, J. W. Gerlach, and T. Petsch, “Static-Charging Mitigation and Contamination Avoidance by Selective Carbon Coating of TEM Samples,” Ultramicroscopy 106, 981985 (2006).
http://dx.doi.org/10.1016/j.ultramic.2006.05.007
14.
14. E. D. Palik (Ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
15.
15. K. Morigaki, Physics of Amorphous Semiconductors (Imperial College Press, London, 1999), p. 141.
16.
16. P. D. Persans, in Amorphous Silicon and Related Materials, Hellmut Fritzsche (Ed.), Vol. B (World Scientific, 1989), p. 1054.
17.
17. D. Adler, “Amorphous Semiconductors,” CRC Critical Reviews in Solid State Sciences 2(3), 317.
http://dx.doi.org/10.1080/10408437108243545
18.
18. W. Henrion, M. Rebien, H. Angermann, and A. Röseler, “Spectroscopic investigations of hydrogen termination, oxide coverage, roughness, and surface state density of silicon during native oxidation in air,” Appl. Surf. Sci. 202, 199205 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00923-6
19.
19. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47, 399 (1984).
http://dx.doi.org/10.1088/0034-4885/47/4/002
20.
20. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway of Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1020
21.
21. D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanov growth of Ge on Si(100),” Phys. Rev. Lett. 64(16), 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
22.
22. C. Claeys and E. Simoen, Fundamental and Technological Aspects of Extended Defects in Germanium (Springer, Wiesbaden, 2009).
23.
23. V. Sorianello, A. de Iacovo, L. Colace, A. Fabbri, L. Tortora, E. Buffagni, and G. Assanto, “High-responsivity near-infrared photodetectors in evaporated Ge-on-Si,” Appl. Phys. Lett. 101, 081101 (2012).
http://dx.doi.org/10.1063/1.4747213
24.
24. M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725(1), 2010.
http://dx.doi.org/10.1117/12.854596
25.
25. M. Steglich, M. Zilk, F. Schrempel, A. Tünnermann, and E.-B. Kley, “Improvement of Ge-on-Si photodiodes by Black Silicon light trapping,” Appl. Phys. Lett. 102, 111110 (2013).
http://dx.doi.org/10.1063/1.4798322
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4813841
Loading
/content/aip/journal/adva/3/7/10.1063/1.4813841
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/7/10.1063/1.4813841
2013-07-10
2014-10-22

Abstract

The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/7/1.4813841.html;jsessionid=22m6ywg6oa1sl.x-aip-live-06?itemId=/content/aip/journal/adva/3/7/10.1063/1.4813841&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Heteroepitaxial Ge-on-Si by DC magnetron sputtering
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4813841
10.1063/1.4813841
SEARCH_EXPAND_ITEM