Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.An updated review of the current state-of the art can be consulted in O. Boulle, G. Malinowski, and M. Klaeui, Mater. Sci. Eng. R 72, 9 (2011).
2. G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468, 213301 (2008).
3. C. Burrowes, A. P. Mihai, D. Ravelosona, J. Kim, C. Chappert, L. Villa, A. Marty, Y. Samson, F. Garcia-Sanchez, L. D. Buda-Prejbeanu, I. Todosa, E. E. Fullerton, and J. Attane, Nat. Phys. 6, 17 (2010).
4. L. San Emeterio Alvarez, K.-Y. Wang, S. Lepadatu, S. Landi, S. J. Bending, and C. H. Marrows, Phys. Rev. Lett. 104, 137205 (2010).
5. T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, and T. Ono, Nat. Mat. 10, 194 (2011).
6. I. M. Miron, T. Moore, H. Szambolics, L. D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, and G. Gaudin, Nat. Mat. 10, 419 (2011).
7. S. Emori, D. C. Bono, and G. S. D. Beach, Appl. Phys. Lett. 101, 042405 (2012).
8. Jae-Chul Lee et al., Phys. Rev. Lett. 107, 067201 (2011).
9. Kwang-Su Ryu, Luc Thomas, See-Hun Yang, and S. S. P. Parkin, Appl. Phys. Express 5, 093006 (2012).
10. O. Sipr et al., Phys. Rev. B 78, 144403 (2008).
11. I. Garate, K. Gilmore, M. D. Stiles, and A. H. MacDonald, Phys. Rev. B 79, 104416 (2009).
12. S. Bohlens and D. Pfannkuche, Phys. Rev. Lett. 105, 177201 (2010).
13. K. Ueda, T. Koyama, R. Hiramatsu, D. Chiba, S. Fukami, H. Tanigawa, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, and T. Ono, Appl. Phys. Lett. 100, 202407 (2012).
14. R. Lavrijsen, P. P. Haazen, E. Mure, J. H. Franken, J. T. Kohlhepp, H. J. M. Swagten, and B. Koopmans, Appl. Phys. Lett. 100, 262408 (2012).
15. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
16. A. Manchon and S. Zhang, Phys. Rev. B 78, 212405 (2008);
16.A. Manchon and S. Zhang, Phys. Rev. B 79, 094422 (2009).
17. K. Obata and G. Tatara, Phys. Rev. B 77, 214419 (2008).
18. A. Matos-Abiague and R. L. Rodriguez-Suearez, Phys. Rev. B 80, 094424 (2009).
19. I. Garate and A. H. MacDonald, Phys. Rev. B 80, 134403 (2009).
20. P. Gambardella and I. M. Miron, Phil. Trans. R. Soc. A 369, 3175 (2011).
21. X. Wang and A. Manchon, Phys. Rev. Lett. 108, 117201 (2012).
22. Kyoung-Whan Kim, Soo-Man Seo, Jisu Ryu, Kyung-Jin Lee, and Hyun-Woo Lee, Phys. Rev. B. 85, 180404R (2012).
23. M. Dyakonov and V. Perel, JETP Lett. 13, 467 (1971).
24. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
25. S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
26. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonal, Phys. Rev. Lett. 92, 126603 (2004).
27. L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011).
28. Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
29. Luqiao Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012).
30. K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, and S. Kasai, Appl. Phys. Express 5, 073002 (2012).
31. Soo-Man Seo, Kyoung-Whan Kim, Jisu Ryu, Hyun-Woo Lee, and Kyung-Jin Lee, Appl. Phys. Lett. 101, 022405 (2012).
32. E. Martinez, Advances in Condensed Matter Physics, Article ID 954196 (2012).
33. E. Martinez, J. Phys.: Condens. Matter. 24, 024206 (2012).
34. E. Martinez, J. Appl. Phys. 111, 033901 (2012).
35.See Supplementary Material at including: (I) a comparison between full micromagnetic and the 1DM results for the free-defect case; (II) Extended details of the CIDM along a perfect strip; and (III) Additional characterization of the CIDM along a rough strip at room temperature. [Supplementary Material]
36. Jin-Hong Park, Choong H. Kim, Hyun-Woo Lee, and Jung Hoon Han, Phys. Rev. B 87, 041301R (2013).
37. P. P. J. Haazen, E. Mure, J. H. Franken, R. Lavrijsen, H. J. M. Swagten, and B. Koopmans, Nat. Mat. 12, 4, 299303 (2013).
38. S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, and G. S. D. Beach, arXiv:1302.2257. Accepted in Nat. Mat. (2013).
39. A. Thiaville, S. Rohart, E. Jue, V. Cros, and A. Fert, European Physics Letters. 100, 57002 (2012).
40.Effective Chiral Ordering Induced by Rashba Interaction” by Kyoung-Whan Kim, Kyung-Jin Lee, and Hyun-Woo Lee, 1st International Workshop on Spin-Orbit Induced Torque (Febrary 2013). This abstract can be reached in the following link:

Data & Media loading...


Article metrics loading...



The current-induced domain wall motion along a ferromagnetic strip with high perpendicular magnetocristalline anisotropy sandwiched in an multilayer stack is theoretically studied, by means of micromagnetic simulations and the one-dimensional model, with emphasis on the roles of the Rashba spin-orbit coupling and the spin Hall effect. The results point out that in the presence of a strong Rashba field the domain wall motion can be either in the direction of the current or opposing to it depending on the amplitude of the spin Hall effect. The predictions are in agreement with the experiments only in a reduced range of positive spin Hall angles under a strong Rashba torque.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd