1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The influence of the spin-orbit torques on the current-driven domain wall motion
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/7/10.1063/1.4813845
1.
1.An updated review of the current state-of the art can be consulted in O. Boulle, G. Malinowski, and M. Klaeui, Mater. Sci. Eng. R 72, 9 (2011).
http://dx.doi.org/10.1016/j.mser.2011.04.001
2.
2. G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468, 213301 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.07.003
3.
3. C. Burrowes, A. P. Mihai, D. Ravelosona, J. Kim, C. Chappert, L. Villa, A. Marty, Y. Samson, F. Garcia-Sanchez, L. D. Buda-Prejbeanu, I. Todosa, E. E. Fullerton, and J. Attane, Nat. Phys. 6, 17 (2010).
http://dx.doi.org/10.1038/nphys1436
4.
4. L. San Emeterio Alvarez, K.-Y. Wang, S. Lepadatu, S. Landi, S. J. Bending, and C. H. Marrows, Phys. Rev. Lett. 104, 137205 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.137205
5.
5. T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tanigawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, and T. Ono, Nat. Mat. 10, 194 (2011).
http://dx.doi.org/10.1038/nmat2961
6.
6. I. M. Miron, T. Moore, H. Szambolics, L. D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, and G. Gaudin, Nat. Mat. 10, 419 (2011).
http://dx.doi.org/10.1038/nmat3020
7.
7. S. Emori, D. C. Bono, and G. S. D. Beach, Appl. Phys. Lett. 101, 042405 (2012).
http://dx.doi.org/10.1063/1.4737899
8.
8. Jae-Chul Lee et al., Phys. Rev. Lett. 107, 067201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.067201
9.
9. Kwang-Su Ryu, Luc Thomas, See-Hun Yang, and S. S. P. Parkin, Appl. Phys. Express 5, 093006 (2012).
http://dx.doi.org/10.1143/APEX.5.093006
10.
10. O. Sipr et al., Phys. Rev. B 78, 144403 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.144403
11.
11. I. Garate, K. Gilmore, M. D. Stiles, and A. H. MacDonald, Phys. Rev. B 79, 104416 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104416
12.
12. S. Bohlens and D. Pfannkuche, Phys. Rev. Lett. 105, 177201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.177201
13.
13. K. Ueda, T. Koyama, R. Hiramatsu, D. Chiba, S. Fukami, H. Tanigawa, T. Suzuki, N. Ohshima, N. Ishiwata, Y. Nakatani, K. Kobayashi, and T. Ono, Appl. Phys. Lett. 100, 202407 (2012).
http://dx.doi.org/10.1063/1.4718599
14.
14. R. Lavrijsen, P. P. Haazen, E. Mure, J. H. Franken, J. T. Kohlhepp, H. J. M. Swagten, and B. Koopmans, Appl. Phys. Lett. 100, 262408 (2012).
http://dx.doi.org/10.1063/1.4732083
15.
15. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
16.
16. A. Manchon and S. Zhang, Phys. Rev. B 78, 212405 (2008);
http://dx.doi.org/10.1103/PhysRevB.78.212405
16.A. Manchon and S. Zhang, Phys. Rev. B 79, 094422 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094422
17.
17. K. Obata and G. Tatara, Phys. Rev. B 77, 214419 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214429
18.
18. A. Matos-Abiague and R. L. Rodriguez-Suearez, Phys. Rev. B 80, 094424 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094424
19.
19. I. Garate and A. H. MacDonald, Phys. Rev. B 80, 134403 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.134403
20.
20. P. Gambardella and I. M. Miron, Phil. Trans. R. Soc. A 369, 3175 (2011).
http://dx.doi.org/10.1098/rsta.2010.0336
21.
21. X. Wang and A. Manchon, Phys. Rev. Lett. 108, 117201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.117201
22.
22. Kyoung-Whan Kim, Soo-Man Seo, Jisu Ryu, Kyung-Jin Lee, and Hyun-Woo Lee, Phys. Rev. B. 85, 180404R (2012).
http://dx.doi.org/10.1103/PhysRevB.85.180404
23.
23. M. Dyakonov and V. Perel, JETP Lett. 13, 467 (1971).
24.
24. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1834
25.
25. S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.393
26.
26. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonal, Phys. Rev. Lett. 92, 126603 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.126603
27.
27. L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036601
28.
28. Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
http://dx.doi.org/10.1126/science.1218197
29.
29. Luqiao Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.096602
30.
30. K. Kondou, H. Sukegawa, S. Mitani, K. Tsukagoshi, and S. Kasai, Appl. Phys. Express 5, 073002 (2012).
http://dx.doi.org/10.1143/APEX.5.073002
31.
31. Soo-Man Seo, Kyoung-Whan Kim, Jisu Ryu, Hyun-Woo Lee, and Kyung-Jin Lee, Appl. Phys. Lett. 101, 022405 (2012).
http://dx.doi.org/10.1063/1.4733674
32.
32. E. Martinez, Advances in Condensed Matter Physics, Article ID 954196 (2012).
33.
33. E. Martinez, J. Phys.: Condens. Matter. 24, 024206 (2012).
http://dx.doi.org/10.1088/0953-8984/24/2/024206
34.
34. E. Martinez, J. Appl. Phys. 111, 033901 (2012).
http://dx.doi.org/10.1063/1.3679146
35.
35.See Supplementary Material at http://dx.doi.org/10.1063/1.4813845 including: (I) a comparison between full micromagnetic and the 1DM results for the free-defect case; (II) Extended details of the CIDM along a perfect strip; and (III) Additional characterization of the CIDM along a rough strip at room temperature. [Supplementary Material]
36.
36. Jin-Hong Park, Choong H. Kim, Hyun-Woo Lee, and Jung Hoon Han, Phys. Rev. B 87, 041301R (2013).
http://dx.doi.org/10.1103/PhysRevB.87.041301
37.
37. P. P. J. Haazen, E. Mure, J. H. Franken, R. Lavrijsen, H. J. M. Swagten, and B. Koopmans, Nat. Mat. 12, 4, 299303 (2013).
http://dx.doi.org/10.1038/nmat3553
38.
38. S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, and G. S. D. Beach, arXiv:1302.2257. Accepted in Nat. Mat. (2013).
39.
39. A. Thiaville, S. Rohart, E. Jue, V. Cros, and A. Fert, European Physics Letters. 100, 57002 (2012).
http://dx.doi.org/10.1209/0295-5075/100/57002
40.
40.Effective Chiral Ordering Induced by Rashba Interaction” by Kyoung-Whan Kim, Kyung-Jin Lee, and Hyun-Woo Lee, 1st International Workshop on Spin-Orbit Induced Torque (Febrary 2013). This abstract can be reached in the following link: http://spintronics.kaust.edu.sa/Pages/International-Workshop-on-Spin-Orbit-Torque-2013.aspx.
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4813845
Loading
/content/aip/journal/adva/3/7/10.1063/1.4813845
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/7/10.1063/1.4813845
2013-07-10
2014-12-29

Abstract

The current-induced domain wall motion along a ferromagnetic strip with high perpendicular magnetocristalline anisotropy sandwiched in an multilayer stack is theoretically studied, by means of micromagnetic simulations and the one-dimensional model, with emphasis on the roles of the Rashba spin-orbit coupling and the spin Hall effect. The results point out that in the presence of a strong Rashba field the domain wall motion can be either in the direction of the current or opposing to it depending on the amplitude of the spin Hall effect. The predictions are in agreement with the experiments only in a reduced range of positive spin Hall angles under a strong Rashba torque.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/7/1.4813845.html;jsessionid=3r333gj57aonr.x-aip-live-02?itemId=/content/aip/journal/adva/3/7/10.1063/1.4813845&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The influence of the spin-orbit torques on the current-driven domain wall motion
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4813845
10.1063/1.4813845
SEARCH_EXPAND_ITEM