Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. Peranio, O. Eibl, and J. Nurnus, J. J. Appl. Phys. 100, 114306 (2006).
2. H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).
3. Y. Y. Li, G. A. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. 22, 4002 (2010).
4. Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).
5. X. Chen, X. C. Ma, K. He, J. F. Jia, and Q. K. Xue, Adv. Mater. 23, 1162 (2011).
6. D. S. Kong, W. H. Dang, J. J. Cha, H. Li, S. Meister, H. L. Peng, Z. F. Liu, and Y. Cui, Nano. Lett. 10, 2245 (2010).
7. D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science 329, 821 (2010).
8. J. Wang, A. M. DaSilva, C. Z. Chang, K. He, J. K. Jain, N. Samarth, X. C. Ma, Q. K. Xue, and M. H. W. Chan, Phys. Rev. B 83, 245438 (2011).
9. H. Steinberg, J. B. Laloe, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Phys. Rev. B 84, 233101 (2011).
10. J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
11. X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
12. M. Z. Hasan and J. E. Moore, Ann. Rev. Cond. Mat. Phys. 2, 55 (2011).
13. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
14. D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 460, 1101 (2009).
15. X. A. Zhang, J. Wang, and S. C. Zhang, Phys. Rev. B 82, 245107 (2010).
16. G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X. Dai, Z. Fang, and K. H. Wu, Appl. Phys. Lett. 95, 053114 (2009).
17. J. S. Zhang, C. Z. Chang, Z. C. Zhang, J. Wen, X. Feng, K. Li, M. H. Liu, K. He, L. L. Wang, X. Chen, Q. K. Xue, X. C. Ma, and Y. Y. Wang, Nat. Commun. 2, 574 (2011).
18. C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L. L. Wang, K. He, X. Chen, J. F. Jia, Y. Y. Wang, Z. Fang, X. Dai, X. C. Xie, X. L. Qi, S. C. Zhang, Q. K. Xue, and X. C. Ma, Appl. Phys. Lett. 97, 143118 (2010).
19. X. Liu, D. J. Smith, J. Fan, Y. H. Zhang, H. Cao, Y. P. Chen, J. Leiner, B. J. Kirby, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett. 99, 171903 (2011).
20. H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New. J. Phys. 12, 103038 (2010).
21. H. T. He, G. Wang, T. Zhang, I. K. Sou, G. K. L. Wong, J. N. Wang, H. Z. Lu, S. Q. Shen, and F. C. Zhang, Phys. Rev. Lett. 106, 166805 (2011).
22. A. Richardella, D. M. Zhang, J. S. Lee, A. Koser, D. W. Rench, A. L. Yeats, B. B. Buckley, D. D. Awschalom, and N. Samarth, Appl. Phys. Lett. 97, 262104 (2010).
23. J. Wang, X. Chen, B. F. Zhu, and S. C. Zhang, Phys. Rev. B 85, 235131 (2012).
24.See supplementary material at for the Hall bar, RHEED evolution, more AFM investigations, and transport properties of Q2Te3 films grown on GaAs (111)A substrates. [Supplementary Material]
25. M. Shinohara and N. Inoue, Appl. Phys. Lett. 66, 1936 (1995).
26. Y. Liu, M. Weinert, and L. Li, Phys. Rev. Lett. 108, 115501 (2012).
27. Y. Takagaki and B. Jenichen, Semicond. Sci. Tech. 27, 035015 (2012).
28. Y. Takagaki, A. Giussani, K. Perumal, R. Calarco, and K.-J. Friedland, Phys. Rev. B 86, 125137 (2012).
29. J. Wang, H. D. Li, C. Z. Chang, K. He, J. S. Lee, H. Z. Lu, Y. Sun, X. C. Ma, N. Samarth, S. Q. Shen, Q. K. Xue, M. H. Xie, and M. H. W. Chan, Nano. Res 5, 739 (2012).
30. H. Tang, D. Liang, R. L. J. Qiu, and X. P. A. Gao, Acs Nano 5, 7510 (2011).
31. H. Z. Lu, J. R. Shi, and S. Q. Shen, Phys. Rev. Lett. 107, 076801 (2011).
32. Y. S. Kim, M. Brahlek, N. Bansal, E. Edrey, G. A. Kapilevich, K. Iida, M. Tanimura, Y. Horibe, S. W. Cheong, and S. Oh, Phys. Rev. B 84, 073109 (2011).
33. J. Wang, C. Z. Chang, H. D. Li, K. He, D. M. Zhang, M. Singh, X. C. Ma, N. Samarth, M. H. Xie, Q. K. Xue, and M. H. W. Chan, Phys. Rev. B 85, 045415 (2012).
34. D. M. Zhang, J. Wang, A. M. DaSilva, J. S. Lee, H. R. Gutierrez, M. H. W. Chan, J. Jain, and N. Samarth, Phys. Rev. B 84, 165120 (2011).
35. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
36. H. Nagai, J. Appl. Phys. 45, 3789 (1974).
37. F. Riesz, J. Vac. Sci. Technol. A 14, 425 (1996).

Data & Media loading...


Article metrics loading...



High quality BiTe and SbTe topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality BiTe and SbTe films. Hall and magnetoresistance measurements indicate that p type SbTe and n type BiTe topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd