Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. Schwenzer, C. Meier, O. Masala, R. Seshadri, S. P. DenBaars, and U. K. Mishra, J. Mater. Chem. 15, 18911895 (2005).
2. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett. 87, 091903 (2005).
3. B. Laumer, T. A. Wassner, T. Schuster, M. Stutzmann, J. Schörmann, M. Rohnke, A. Chernikov, V. Bornwasser, M. Koch, S. Chatterjee, and M. Eickhoff, J. Appl. Phys. 110, 093513 (2011).
4. A. Redondo-Cubero, M. Vinnichenko, M. Krause, A. Mücklich, E. Muñoz, A. Kolitsch, and R. Gago, J. Appl. Phys. 110, 113516 (2011).
5. M. Fujita, N. Kawamoto, M. Sasajima, and Y. Horikoshi, J. Vac. Sci. Technol. B 22, 14841486 (2004).
6. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000).
7. C. Becker, M. Pagels, C. Zachäus, B. Pollakowski, B. Beckhoff, B. Kanngieer, and B. Rech, J. Appl. Phys. 113, 044519 (2013).
8. M. Mehta, M. Ruth, K. A. Piegdon, D. Krix, H. Nienhaus, and C. Meier, J. Vac. Sci. Technol. B 27, 2097 (2009).
9. M. Mehta and C. Meier, J. Electrochem. Soc. 158, H119 (2011).
10. J. J. Zhu, B. X. Lin, X. K. Sun, R. Yao, C. S. Shi, and Z. X. Fu, Thin Solid Films 478, 218222 (2005).
11. M. A. Gluba, N. H. Nickel, K. Hinrichs, and J. Rappich, J. Appl. Phys. 113, 043502 (2013).
12. M. Ruth and C. Meier, Phys. Rev. B 86, 224108 (2012).
13. P. Kröger, M. Ruth, N. Weber, and C. Meier, Appl. Phys. Lett. 100, 263114 (2012).
14. H.-J. Ko, M.-S. Han, Y.-S. Park, Y.-S. Yu, B.-I. Kim, S. S. Kim, and J.-H. Kim, J. Crystal Growth 269, 493498 (2004).
15. S. Graubner, C. Neumann, N. Volbers, B. K. Meyer, J. Bläsing, and A. Krost, Appl. Phys. Lett. 90, 042103 (2007).
16. C. Klingshirn, Chem. Phys. Chem. 8, 782803 (2007).
17. D. H. Zhang and D. E. Brodie, Thin Solid Films 238, 95100 (1994).
18. K. C. Sekhar, S. Levichev, K. Kamakshi, S. Doyle, A. Chahboun, and M. J. M. Gomes, Materials Letters 98, 149152 (2013).
19. Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, J. Crystal Growth 259, 335342 (2003).
20. H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, Adv. Mater. 18, 771 (2006).
21. A. P. Abiyasa, S. F. Yu, E. S. P. Leong, and H. Y. Yang, Appl. Phys. Lett. 90, 231106 (2007).
22. G. J. Exarhos and S. K. Sharma, Thin Solid Films. 270, 2732 (1995).
23. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005).
24. K.-K. Kim, N. Koguchi, Y.-W. Ok, T.-Y. Seong, and S.-J. Park, Appl. Phys. Lett. 84, 3810 (2004).
25. F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Stat. Sol. B 226, R4R5 (2001).;2-F
26. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 1501915027 (2000).
27. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
28. R. Ramprasad, H. Zhu, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 108, 066404 (2012).
29. J. F. Cordaro, Y. Shim, and J. E. May, J. Appl. Phys. 60, 4186 (1986).
30. K. Thonke, T. Gruber, N. Teofilov, R. Schönfelder, A. Waag, and R. Sauer, Physica B 945, 308310 (2001).
31. K. T. Queeney, M. K. Weldon, J. P. Chang, Y. J. Chabal, A. B. Gurevich, J. Sapjeta, and R. L. Opila, J. Appl. Phys. 87, 1322 (2000)
32. T. Shimura, H. Misaki, M. Umeno, I. Takahashi, and J. Harada, J. Crystal Growth 166, 786791 (1996).
33. P. H. Fuoss, L. J. Norton, S. Brennan, and A. Fischer-Colbrie, Phys. Rev. Lett. 60, 600603 (1988).
34. A. F. Wright and M. S. Lehrmann, J. Solid State Chem. 36, 371380 (1981).
35. H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, Opt. Mater. 25, 79 (2004).

Data & Media loading...


Article metrics loading...



Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd