1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Structural enhancement of ZnO on SiO2 for photonic applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/7/10.1063/1.4815974
1.
1. B. Schwenzer, C. Meier, O. Masala, R. Seshadri, S. P. DenBaars, and U. K. Mishra, J. Mater. Chem. 15, 18911895 (2005).
http://dx.doi.org/10.1039/b418203k
2.
2. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett. 87, 091903 (2005).
http://dx.doi.org/10.1063/1.2034113
3.
3. B. Laumer, T. A. Wassner, T. Schuster, M. Stutzmann, J. Schörmann, M. Rohnke, A. Chernikov, V. Bornwasser, M. Koch, S. Chatterjee, and M. Eickhoff, J. Appl. Phys. 110, 093513 (2011).
http://dx.doi.org/10.1063/1.3658020
4.
4. A. Redondo-Cubero, M. Vinnichenko, M. Krause, A. Mücklich, E. Muñoz, A. Kolitsch, and R. Gago, J. Appl. Phys. 110, 113516 (2011).
http://dx.doi.org/10.1063/1.3665204
5.
5. M. Fujita, N. Kawamoto, M. Sasajima, and Y. Horikoshi, J. Vac. Sci. Technol. B 22, 14841486 (2004).
http://dx.doi.org/10.1116/1.1740766
6.
6. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000).
http://dx.doi.org/10.1063/1.1331089
7.
7. C. Becker, M. Pagels, C. Zachäus, B. Pollakowski, B. Beckhoff, B. Kanngieer, and B. Rech, J. Appl. Phys. 113, 044519 (2013).
http://dx.doi.org/10.1063/1.4789599
8.
8. M. Mehta, M. Ruth, K. A. Piegdon, D. Krix, H. Nienhaus, and C. Meier, J. Vac. Sci. Technol. B 27, 2097 (2009).
http://dx.doi.org/10.1116/1.3186528
9.
9. M. Mehta and C. Meier, J. Electrochem. Soc. 158, H119 (2011).
http://dx.doi.org/10.1149/1.3519999
10.
10. J. J. Zhu, B. X. Lin, X. K. Sun, R. Yao, C. S. Shi, and Z. X. Fu, Thin Solid Films 478, 218222 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.068
11.
11. M. A. Gluba, N. H. Nickel, K. Hinrichs, and J. Rappich, J. Appl. Phys. 113, 043502 (2013).
http://dx.doi.org/10.1063/1.4788675
12.
12. M. Ruth and C. Meier, Phys. Rev. B 86, 224108 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.224108
13.
13. P. Kröger, M. Ruth, N. Weber, and C. Meier, Appl. Phys. Lett. 100, 263114 (2012).
http://dx.doi.org/10.1063/1.4731767
14.
14. H.-J. Ko, M.-S. Han, Y.-S. Park, Y.-S. Yu, B.-I. Kim, S. S. Kim, and J.-H. Kim, J. Crystal Growth 269, 493498 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.05.096
15.
15. S. Graubner, C. Neumann, N. Volbers, B. K. Meyer, J. Bläsing, and A. Krost, Appl. Phys. Lett. 90, 042103 (2007).
http://dx.doi.org/10.1063/1.2434170
16.
16. C. Klingshirn, Chem. Phys. Chem. 8, 782803 (2007).
http://dx.doi.org/10.1002/cphc.200700002
17.
17. D. H. Zhang and D. E. Brodie, Thin Solid Films 238, 95100 (1994).
http://dx.doi.org/10.1016/0040-6090(94)90655-6
18.
18. K. C. Sekhar, S. Levichev, K. Kamakshi, S. Doyle, A. Chahboun, and M. J. M. Gomes, Materials Letters 98, 149152 (2013).
http://dx.doi.org/10.1016/j.matlet.2013.02.032
19.
19. Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, J. Crystal Growth 259, 335342 (2003).
http://dx.doi.org/10.1016/j.jcrysgro.2003.07.015
20.
20. H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, Adv. Mater. 18, 771 (2006).
http://dx.doi.org/10.1002/adma.200501693
21.
21. A. P. Abiyasa, S. F. Yu, E. S. P. Leong, and H. Y. Yang, Appl. Phys. Lett. 90, 231106 (2007).
http://dx.doi.org/10.1063/1.2746940
22.
22. G. J. Exarhos and S. K. Sharma, Thin Solid Films. 270, 2732 (1995).
http://dx.doi.org/10.1016/0040-6090(95)06855-4
23.
23. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005).
http://dx.doi.org/10.1063/1.1940137
24.
24. K.-K. Kim, N. Koguchi, Y.-W. Ok, T.-Y. Seong, and S.-J. Park, Appl. Phys. Lett. 84, 3810 (2004).
http://dx.doi.org/10.1063/1.1741030
25.
25. F. H. Leiter, H. R. Alves, A. Hofstaetter, D. M. Hofmann, and B. K. Meyer, Phys. Stat. Sol. B 226, R4R5 (2001).
http://dx.doi.org/10.1002/1521-3951(200107)226:13.0.CO;2-F
26.
26. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 1501915027 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15019
27.
27. A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165202
28.
28. R. Ramprasad, H. Zhu, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 108, 066404 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.066404
29.
29. J. F. Cordaro, Y. Shim, and J. E. May, J. Appl. Phys. 60, 4186 (1986).
http://dx.doi.org/10.1063/1.337504
30.
30. K. Thonke, T. Gruber, N. Teofilov, R. Schönfelder, A. Waag, and R. Sauer, Physica B 945, 308310 (2001).
31.
31. K. T. Queeney, M. K. Weldon, J. P. Chang, Y. J. Chabal, A. B. Gurevich, J. Sapjeta, and R. L. Opila, J. Appl. Phys. 87, 1322 (2000)
http://dx.doi.org/10.1063/1.372017
32.
32. T. Shimura, H. Misaki, M. Umeno, I. Takahashi, and J. Harada, J. Crystal Growth 166, 786791 (1996).
http://dx.doi.org/10.1016/0022-0248(95)00496-3
33.
33. P. H. Fuoss, L. J. Norton, S. Brennan, and A. Fischer-Colbrie, Phys. Rev. Lett. 60, 600603 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.600
34.
34. A. F. Wright and M. S. Lehrmann, J. Solid State Chem. 36, 371380 (1981).
http://dx.doi.org/10.1016/0022-4596(81)90449-7
35.
35. H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, Opt. Mater. 25, 79 (2004).
http://dx.doi.org/10.1016/S0925-3467(03)00229-5
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4815974
Loading
/content/aip/journal/adva/3/7/10.1063/1.4815974
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/7/10.1063/1.4815974
2013-07-11
2014-12-29

Abstract

Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/7/1.4815974.html;jsessionid=1235aw1fb5ahl.x-aip-live-02?itemId=/content/aip/journal/adva/3/7/10.1063/1.4815974&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Structural enhancement of ZnO on SiO2 for photonic applications
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4815974
10.1063/1.4815974
SEARCH_EXPAND_ITEM