1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermal conductivity prediction for GaN nanowires from atomistic potential
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/7/10.1063/1.4816788
1.
1. W. Liang and M. Zhou, ASME J. Eng. Mater. Technol. 127, 423 (2005).
http://dx.doi.org/10.1115/1.1928915
2.
2. A. J. Kulkarni, M. Zhou, K. Sarasamak, and S. Limpijumnong, Phys. Rev. Lett. 97, 105502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.105502
3.
3. A. J. Kulkarni and M. Zhou, Nanotechnology 18, 435706 (2007).
http://dx.doi.org/10.1088/0957-4484/18/43/435706
4.
4. J. Wang, A. J. Kulkarni, K. Sarasamak, S. Limpijumnong, F. J. Ke, and M. Zhou, Phys. Rev. B 76, 172103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.172103
5.
5. A. Maiti, G. D. Mahan, and S. T. Pantelides, Solid State Commun. 102, 517 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00049-5
6.
6. P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B 65, 144306 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144306
7.
7. C. Oligschleger and J. C. Schön, Phys. Rev. B 59, 4125 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.4125
8.
8. J. Che, T. Çağin, W. Deng, and W. A. Goddard III, J. Chem. Phys. 113, 6888 (2000).
http://dx.doi.org/10.1063/1.1310223
9.
9. S. G. Volz and G. Chen, Appl. Phys. Lett. 75, 2056 (1999).
http://dx.doi.org/10.1063/1.124914
10.
10. R. C. Picu, T. Borca-Tasciuc, and M. C. Pavel, J. Appl. Phys. 93, 3535 (2003).
http://dx.doi.org/10.1063/1.1555256
11.
11. A. Debernardi, S. Baroni, and E. Molinari, Phys. Rev. Lett. 75, 1819 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1819
12.
12. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1861
13.
13. X. Gonze, Phys. Rev. A 52, 1086 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.1086
14.
14. D. A. Broido, M. Malomy, G. Birner, N. Mingo, and D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).
http://dx.doi.org/10.1063/1.2822891
15.
15. J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Lett. 106, 045901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.045901
16.
16. N. Bonini, J. Garg, and N. Marzari, Nano Lett. 12, 2673 (2012).
http://dx.doi.org/10.1021/nl202694m
17.
17. Y. Chen, D. Li, J. Lukes, and A. Majumdar, J. Heat Trasfer 127, 1129 (2005).
http://dx.doi.org/10.1115/1.2035114
18.
18. D. Lacroix, K. Joulain, D. Terris, and D. Lemonnier, Appl. Phys. Lett. 89, 103104 (2006).
http://dx.doi.org/10.1063/1.2345598
19.
19. P. Chantrenne, J. L. Barrar, X. Blasé, and J. D. Gale, J. Appl. Phys. 97, 104318 (2005).
http://dx.doi.org/10.1063/1.1898437
20.
20. J. Zou, J. Appl. Phys. 108, 034324 (2010).
http://dx.doi.org/10.1063/1.3463358
21.
21. S. M. Mamand, M. S. Omar, and A. J. Muhammad, Mater. Res. Bull. 47, 1264 (2012).
http://dx.doi.org/10.1016/j.materresbull.2011.12.025
22.
22. K. Jung, M. Cho, and M. Zhou, Appl. Phys. Lett. 98, 041909 (2011).
http://dx.doi.org/10.1063/1.3549691
23.
23. K. Jung, M. Cho, and M. Zhou, J. Appl. Phys. 112, 083522 (2012).
http://dx.doi.org/10.1063/1.4759282
24.
24. S. G. Volz and G. Chen, Phys. Rev. B 61, 2651 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2651
25.
25. B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Comput. Mater. Sci. 53, 278 (2012).
http://dx.doi.org/10.1016/j.commatsci.2011.08.016
26.
26. S. Bhowmick and V. B. Shenoy, J. Chem. Phys. 125, 164513 (2006).
http://dx.doi.org/10.1063/1.2361287
27.
27. M. T. Dove, Introduction to Lattice Dynamics. (Cambridge University Press, 2005).
28.
28. S. Tamura, Phys. Rev. B 27, 858 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.858
29.
29. G. Deinzer, G. Birner, and D. Strauch, Phys. Rev. B 67, 144304 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.144304
30.
30. A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1544
31.
31. J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 (2001).
http://dx.doi.org/10.1063/1.1345515
32.
32. Z. Wang, X. Zu, F. Gao, W. J. Weber, and J. P. Crocombette, Appl. Phys. Lett. 90, 161923 (2007).
http://dx.doi.org/10.1063/1.2730747
33.
33. C. Guthy, C. Y. Nam, and J. E. Fischer, J. Appl. Phys. 103, 064319 (2008).
http://dx.doi.org/10.1063/1.2894907
34.
34. L. Shi, Nanoscale and Microscale Thermophys. Eng. 16, 79 (2012).
http://dx.doi.org/10.1080/15567265.2012.667514
35.
35. P. Zapol, R. Pandey, and J. D. Gale, J. Phys.: Condens. Matter 9, 9517 (1997).
http://dx.doi.org/10.1088/0953-8984/9/44/008
36.
36. D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999).
http://dx.doi.org/10.1063/1.478738
37.
37. C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).
http://dx.doi.org/10.1063/1.2206581
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4816788
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A schematic view of phase transformation of [0001]-oriented GaN nanowires during tensile loading and unloading.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic illustration of the approach for predicting thermal conductivity of deformed structures using atomistic configurations from MD simulations and an atomistic potential.

Image of FIG. 3.

Click to view

FIG. 3.

Thermal conductivities of GaN nanowires at 300 K calculated using the Green-Kubo method and the model: (a) nanowire with diameter = 2.91 nm; and (b) nanowire with diameter = 3.55 nm. Error bars denote standard deviation of conductivity.

Image of FIG. 4.

Click to view

FIG. 4.

Atomistic configurations of a nanowire with diameter = 3.55 nm at = 1500 K during loading and unloading: (a) WZ-structured nanowire at zero strain; (b) TS-structured nanowire at a strain of 0.1; (c) WZ-TS structured nanowire at a strain of 0.02; and (d) WZ-TS structured nanowire at a strain of -0.02.

Image of FIG. 5.

Click to view

FIG. 5.

Thermal conductivities of GaN nanowires with diameter = 3.55 nm at 1500 K calculated using the Green-Kubo method and the model. Error bars denote standard deviation of conductivity.

Loading

Article metrics loading...

/content/aip/journal/adva/3/7/10.1063/1.4816788
2013-07-25
2014-04-16

Abstract

A model is developed to evaluate the thermal conductivity of semiconducting compounds as a function of their atomistic structures during phase transformations induced by mechanical loading. The approach uses atomistic configurational information and interatomic interactions as input. The harmonic and anharmonic behaviors of phonons are captured through force constants which are sensitive to structural changes. The calculations focus on changes in thermal conductivity of GaN nanowires in response to deformation and phase transformation. Results show that the model yields results consistent with data obtained using the Green-Kubo method and is 50 times more efficient than calculations based on molecular dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/7/1.4816788.html;jsessionid=18y3hi6xwr3ob.x-aip-live-06?itemId=/content/aip/journal/adva/3/7/10.1063/1.4816788&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal conductivity prediction for GaN nanowires from atomistic potential
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/7/10.1063/1.4816788
10.1063/1.4816788
SEARCH_EXPAND_ITEM