Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Mattox, The Foundations of Vacuum Coating Technology (William Andrew Publishing, 2003).
2. D. W. Pashley, “A historical review of epitaxy,” in Epitaxial Growth, Part A, J. W. Matthews, Ed. (Academic Press, 1975).
3. S. N. Piramanayagam, “Perpendicular recording media for hard disk drives,” J. Appl. Phys. 102, 011301 (2007).
4. D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, and V. R. Stamenkovic, “Mesostructured thin films as electrocatalysts with tunable composition and surface morphology,” Nature Materials 11, 10511058 (2012).
5. C. M. Tan and A. Roy, “Electromigration in ULSI interconnects,” Mater. Sci. Engin. Rep. 58, 175 (2007).
6. C. V. Thompson, J. Floro, and H. I. Smith, “Epitaxial grain growth in thin metal films,” J. Appl. Phys. 67, 40994104 (1990).
7. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-grown monolayer graphene onto arbitrary substrates,” ACS Nano 5, 69166924, (2011).
8. R. He, L. Zhao, N. Petrone, K. S. Kim, M. Roth, J. Hone, P. Kim, A. Pasupathy, and A. Pinczuk, “Large physisorption strain in chemical vapor deposition of graphene on copper substrates,” Nano Lett. 12, 24082413 (2012).
9. S. Nie, J. M. Wofford, N. C. Bartelt, O. D. Dubon, and K. F. McCarty, “Origin of the mosaicity in graphene grown on Cu(111),” Phys. Rev. B 84, 155425 (2011).
10. J. M. Wofford, S. Nie, K. F. McCarty, N. C. Bartelt, and O. D. Dubon, “Graphene islands on Cu foils: The interplay between shape, orientation, and defects,” Nano Lett. 10, 48904896 (2010).
11. G. Dehm, H. Edongué, T. Wagner, S. Oh, and E. Arzt, “Obtaining different orientation relationships for Cu films grown on (0001) α-Al2O3 substrates by magnetron sputtering,” Inter. J. Mat. Res. 96, 249254 (2005).
12. C. Scheu, M. Gao, S. Oh, G. Dehm, S. Klein, A. Tomsia, and M. Rühle, “Bonding at copper–alumina interfaces established by different surface treatments: a critical review,” J. Mater. Sci. 41, 51615168 (2006).
13. S. H. Oh, C. Scheu, T. Wagner, E. Tchernychova, and M. Rühle, “Epitaxy and bonding of Cu films on oxygen-terminated α-Al2O3(0001) surfaces,” Acta Materialia 54, 26852696 (2006).
14. S. H. Oh, C. Scheu, T. Wagner, and M. Rühle, “Control of bonding and epitaxy at copper/sapphire interface,” Appl. Phys. Lett. 91, 141912 (2007).
15. S. Curiotto, H. Chien, H. Meltzman, P. Wynblatt, G. S. Rohrer, W. D. Kaplan, and D. Chatain, “Orientation relationships of copper crystals on c-plane sapphire,” Acta Materialia 59(13), 53205331 (2011).
16. C. V. Thompson, “Structural evolution during processing of polycrystalline thin films,” Annu. Rev. Mater. Sci. 30, 159190 (2000).
17. C. V. Thompson, “Secondary grain growth in thin films of semiconductors: Theoretical aspects,” J. Appl. Phys. 58, 763772 (1985).
18. T. Takewaki, H. Yamada, T. Shibata, T. Ohmi, and T. Nitta, “Formation of giant-grain copper interconnects by a low-energy ion bombardment process for high-speed ULSIs,” Mater. Chem. Phys. 41, 182191 (1995).
19. K. Vanstreels, S. Brongersma, Z. Tokei, L. Carbonell, W. De Ceuninck, J. D’Haen, and M. D’Olieslaeger, “Increasing the mean grain size in copper films and features,” J. Mater. Res. 23, 642662 (2008).
20. J. Deng, “Phase field modeling of grain growth in thin films on rigid substrates,” Phys. Stat. Sol. B 249, 564574 (2012).
21. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399434 (2012).
22. D. Srolovitz and M. Goldiner, “The thermodynamics and kinetics of film agglomeration,” JOM 47, 3136 (1995).
23. W. W. Mullins, “Theory of thermal grooving,” J. Appl. Phys. 28, 333339 (1957).
24.See supplementary material at for additional figures. [Supplementary Material]
25. D. L. Miller, M. W. Keller, J. M. Shaw, A. N. Chiaramonti, and R. R. Keller, “Epitaxial (111) films of Cu, Ni, and CuxNiy on α - Al2O3 (0001) for graphene growth by chemical vapor deposition,” J. Appl. Phys. 112, 064317 (2012).
26. K. M. Reddy, A. D. Gledhill, C.-H. Chen, J. M. Drexler, and N. P. Padture, “High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire,” Appl. Phys. Lett. 98, 113117 (2011).
27. M. Ishihara, Y. Koga, J. Kim, K. Tsugawa, and M. Hasegawa, “Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction,” Mater. Lett. 65, 28642867 (2011).
28. B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K. Ikeda, and S. Mizuno, “Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD,” Carbon 50, 5765 (2012).
29. A. Hashibon, C. Elsässer, and M. Rühle, “Structure at abrupt copper–alumina interfaces: An ab initio study,” Acta Materialia 53, 53235332 (2005).

Data & Media loading...


Article metrics loading...



Single crystal metal films on insulating substrates are attractive for microelectronics and other applications, but they are difficult to achieve on macroscopic length scales. The conventional approach to obtaining such films is epitaxialgrowth at high temperature using slow deposition in ultrahigh vacuum conditions. Here we describe a different approach that is both simpler to implement and produces superior results: sputter deposition at modest temperatures followed by annealing to induce secondary graingrowth. We show that polycrystalline as-deposited Cu on α-AlO(0001) can be transformed into Cu(111) with centimeter-sized grains. Employing optical microscopy, x-ray diffraction, and electron backscatter diffraction to characterize the films before and after annealing, we find a particular as-deposited grain structure that promotes the growth of giant grains upon annealing. To demonstrate one potential application of such films, we growgraphene by chemical vapor deposition on wafers of annealedCu and obtain epitaxialgraphenegrains of 0.2 mm diameter.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd