Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, Nanotechnol. 17, 1454 (2006).
2. H. P. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
3. H. P. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, Nano Lett. 12, 1317 (2012).
4. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
5. C. Liang-Yi, L. Chi-Kang, T. Jin-Yi, H. Li-Chuan, W. Yuh-Renn, and H. Jian Jang, IEEE J. Quantum Electron. 49, 224 (2013).
6. W. Guo, M. Zhang, P. Bhattacharya, and J. Heo, Nano Lett. 11, 1434 (2011).
7. P. Renwick, H. Tang, J. Bai, and T. Wang, Appl. Phys. Lett. 100, 182105 (2012).
8. C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann, Phys. Status Solidi A 209, 2304 (2012).
9. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. Mi, and G. T. Wang, Opt. Express 19, 25528 (2011).
10. L.-Y. Chen, Y.-Y. Huang, C.-H. Chang, Y.-H. Sun, Y.-W. Cheng, M.-Y. Ke, C.-P. Chen, and J. J. Huang, Opt. Express 18, 7664 (2010).
11. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
12. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, and S. W. Koch, Phys. Status Solidi C 6, S913 (2009).
13. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, Appl. Phys. Lett. 83, 4906 (2003).
14. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 1691 (1998).
15. D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, and C. Sone, Appl. Phys. Lett. 99, 041112 (2011).
16. D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. Fred Schubert, H. Shim, M.-H. Kim, and C. Sone, Appl. Phys. Lett. 99, 251115 (2011).
17. J. Piprek and S. Li, Opt. Quantum Electron. 42, 89 (2011).
18. J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, Appl. Phys. Lett. 93, 121107 (2008).
19. Y. Yang, X. Cao, and C. Yan, IEEE Trans. Electron. Dev. 55, 7 (2008).
20. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
21. J. Hader, J. V. Moloney, and S. W. Koch, IEEE J. Quant. Electron. 44, 185 (2008).
22. C. G. Van de Walle and D. Segev, J. Appl. Phys. 101, 081704 (2007).
23. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997).
24. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
25. B. Witzigmann, V. Laino, M. Luisier, U. T. Schwarz, G. Feicht, W. Wegscheider, K. Engl, M. Furitsch, A. Leber, A. Lell, and V. Härle, Appl. Phys. Lett. 88, 021104 (2006).
26. P. Waltereit, O. Brandt, A. Trampert, H. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. Ploog, Nature 406, 865 (2000).
27. K. Watanabe, N. Nakanishi, T. Yamazaki, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, and M. Shiojiri, Appl. Phys. Lett. 82, 715 (2003).
28. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Nat Mater 5, 810 (2006).
29. C. J. Humphreys, Philos. Mag. 87, 1971 (2007).
30. Y.-L. Lai, C.-P. Liu, Y.-H. Lin, T.-H. Hsueh, R.-M. Lin, D.-Y. Lyu, Z.-X. Peng, and T.-Y. Lin, Nanotechnol. 17, 3734 (2006).
31. B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007).
32. S. Hammersley, T. J. Badcock, D. Watson-Parris, M. J. Godfrey, P. Dawson, M. J. Kappers, and C. J. Humphreys, Phys. Status Solidi C 8, 2194 (2011).
33. M. S. Minsky, S. Watanabe, and N. Yamada, J. Appl. Phys. 91, 5176 (2002).
34. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).
35. M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, J. Appl. Phys. 87, 3497 (2000).
36. Y.-J. Lin, W.-X. Lin, C.-T. Lee, and F.-T. Chien, Solid. State. Commun. 137, 257 (2006).
37. Z. Z. Bandić, P. M. Bridger, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 72, 3166 (1998).
38. J. Wang, L. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. r. Christen, J. Appl. Phys. 112, 023107 (2012).
39. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 99, 181127 (2011).

Data & Media loading...


Article metrics loading...



The optical performance of top-down etched InGaN/GaN nanorod light emitting diodes (LEDs) was studied using temperature variable photoluminescence spectroscopy with a 405 nm pump laser. Efficiency droop is measured from such nanorod structures, which is further enhanced with decreasing temperature. Through detailed rate equation analysis of the temperature-dependent carrier distribution and modeling of the quantum efficiency, this unique phenomenon can be largely explained by the interplay and dynamics between carrier radiative recombination in localized states and nonradiative recombination via surface states/defects.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd