1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/8/10.1063/1.4817837
1.
1. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications Eds: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Springer, New York, 2001).
2.
2. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).
http://dx.doi.org/10.1021/cr050569o
3.
3. P. M. Ajayan, and O. Z. Zhou, Top. Appl. Phys. 80, 391 (2001).
http://dx.doi.org/10.1007/3-540-39947-X
4.
4. P. Avouris, Acc. Chem. Res. 35, 1026 (2002).
http://dx.doi.org/10.1021/ar010152e
5.
5. Z. Yao, C. L. Kane, and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2941
6.
6. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, and J. A. Rogers, Nat. Nanotech. 2, 230 (2007).
http://dx.doi.org/10.1038/nnano.2007.77
7.
7. Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, Nano Lett. 4, 2031 (2004).
http://dx.doi.org/10.1021/nl048905o
8.
8. R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, W. Hoenlein, and W. Pompe, Nano Lett. 4, 831 (2004).
http://dx.doi.org/10.1021/nl049776e
9.
9. L. Qu, F. Du, and L. Dai, Nano Lett. 8, 2682 (2008).
http://dx.doi.org/10.1021/nl800967n
10.
10. P. Mahanandia and K. K. Nanda, Appl. Phys. Lett. 93, 063105 (2008).
http://dx.doi.org/10.1063/1.2970033
11.
11. S. Kerstin, M. Bert, L. Karl, T. Yuto, M. Christian, H. Jurgen, B. Eduard, R. Egon, and B. Peter, Appl. Phys. Lett. 91, 073521 (2007).
http://dx.doi.org/10.1063/1.2771050
12.
12. R. Konenkamp, R. C. Word, and M. Godinez, Nano Lett. 5, 2005 (2005).
http://dx.doi.org/10.1021/nl051501r
13.
13. A. Manekkathodi, M.-Y. Lu, C. W. Wang, and L.-J. Chen, Adv. Mater. 22, 4059 (2010).
http://dx.doi.org/10.1002/adma.201001289
14.
14. R. S. Aga, D. Jowhar, A. Ueda, Z. Pan, W. E. Collins, R. Mu, K. D. Singer, and J. Shen, Appl. Phys. Lett. 91, 232108 (2007).
http://dx.doi.org/10.1063/1.2822896
15.
15. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Lett. 93, 123309 (2008).
http://dx.doi.org/10.1063/1.2989125
16.
16. K. Byrappa, A. Dayananda, C. Sajan, B. Basavalingu, M. Shayan, K. Soga, and M. Yoshimura, J. Mater. Sci. 43, 2348 (2008).
http://dx.doi.org/10.1007/s10853-007-1989-8
17.
17. X. Yan, B.-K. Tay, and P. Miele, Carbon 46, 753 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.01.027
18.
18. J. C. Jingbo, N. Choolakadavil Khalid, L. Jae-Hyeok, L. Minsu, and K. Jae-Ho, J. Phys. D: Appl. Phys. 44, 095101 (2011).
http://dx.doi.org/10.1088/0022-3727/44/9/095101
19.
19. J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, Adv. Funct. Mater. 20, 2470 (2010).
http://dx.doi.org/10.1002/adfm.201000249
20.
20. H. Zhang, N. Du, B. Chen, D. Li, and D. Yang, Sci. Adv. Mater. 1, 13 (2009).
http://dx.doi.org/10.1166/sam.2009.1002
21.
21. Y. Zhu, H. I. Elim, Y. L. Foo, T. Yu, Y. Liu, W. Ji, J. Y. Lee, Z. Shen, A. T. S. Wee, J. T. L. Thong, and C. H. Sow, Adv. Mater. 18, 587 (2006).
http://dx.doi.org/10.1002/adma.200501918
22.
22. J. Liu, X. Li, and L. Dai, Adv. Mater. 18, 1740 (2006).
http://dx.doi.org/10.1002/adma.200502346
23.
23. R. Zhang, L. Fan, Y. Fang, and S. Yang, J. Mat. Chem. 18, 4964 (2008).
http://dx.doi.org/10.1039/b808769e
24.
24. C. J. Hu, Y. H. Lin, C. W. Tang, M. Y. Tsai, W. K. Hsu, and H. F. Kuo, Adv. Mater. 23, 2941 (2011).
http://dx.doi.org/10.1002/adma.201100358
25.
25. S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 91, 072101 (2007).
http://dx.doi.org/10.1063/1.2768917
26.
26. P. Mahanandia and K. K. Nanda, Nanotechnology 19, 155602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/15/155602
27.
27. R. P. Sugavaneshwar, and K. K. Nanda, Sci. Rep. 3, 1172 (2013).
http://dx.doi.org/10.1038/srep01172
28.
28. M. Nakamizo and K. Tamai, Carbon 22, 197 (1984).
http://dx.doi.org/10.1016/0008-6223(84)90216-1
29.
29. J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, Appl. Phys. Lett. 94, 191103 (2009).
http://dx.doi.org/10.1063/1.3133358
30.
30. T.-Y. Wei, C.-T. Huang, B. J. Hansen, Y.-F. Lin, L.-J. Chen, S.-Y. Lu, and Z. L. Wang, Appl. Phys. Lett. 96, 013508 (2010).
http://dx.doi.org/10.1063/1.3285178
31.
31. Y. Ye, L. Dai, P. C. Wu, C. Liu, T. Sun, R. M. Ma, and G. G. Qin, Nanotechnology 20, 375202 (2009).
http://dx.doi.org/10.1088/0957-4484/20/37/375202
32.
32. Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, and N. C. Greenham, Nano Lett. 8, 1649 (2008).
http://dx.doi.org/10.1021/nl0803702
33.
33. A. Tricoli, M. Righettoni, and A. Teleki, Angew. Chem. Int. Ed. 49, 7632 (2010).
http://dx.doi.org/10.1002/anie.200903801
34.
34. A. Bera, H. Peng, J. Lourembam, Y. Shen, X. W. Sun, and T. Wu, Adv. Funct. Mater., 2013.
http://dx.doi.org/10.1002/adfm.201300509
35.
35. W. Kim and K. S. Chu, Phys. Stat. Solidi A 206, 179 (2009).
http://dx.doi.org/10.1002/pssa.200824338
36.
36. Z. Dai, L. Wei, D. Xu, and Y. Zhang, Physica E 44, 1999 (2012).
http://dx.doi.org/10.1016/j.physe.2012.05.033
37.
37. G. V. Rao, F. Sauberlich, and A. Klein, Appl. Phys. Lett. 87, 032101 (2005).
http://dx.doi.org/10.1063/1.1995951
38.
38. R. P. Sugavaneshwar, G. K. Gosami, and K. K. Nanda, J. Mat. Chem. C. 1, 1066 (2013).
http://dx.doi.org/10.1039/c2tc00438k
39.
39. A. J. Mieszawska, R. Jalilian, G. U. Sumanasekera, and F. P. Zamborini, Small 3, 722 (2007).
http://dx.doi.org/10.1002/smll.200600727
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4817837 for Photoluminscence spectrum of BMWCNT- ZnO (Fig. S1). Growth of ZnO on the CNT by keeping a CNT bundle on substrate by silver paste (Fig. S2). I-V characteristics of CNT-ZnO hybrid structures (Fig. S3). p-type FET character of another BMWCNT-ZnO hybrid structure (Fig. S4). [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4817837
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of (a) as-synthesized BMWCNT and (b & c) ZnO on BMWCNT at different magnifications. (d) SEM image of ZnO nanorods on a small array of BMWCNT. (e) TEM image of ZnO nanorods on an array of BMWCNT. (f) TEM of a ZnO nanorod. (g) HRTEM of the ZnO nanorod.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Raman spectra of BMWCNTs before and after ZnO growth. (b-d) XPS spectra of BMWCNT-ZnO hybrid structures for C 1s, O 1s and Zn 2p.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Schematic of the device fabricated for BMWCNT-ZnO hybrid structures. (b) characteristic of a BMWCNT-ZnO nanowires based hybrid structure. characteristic of another hybrid structure is shown in the inset. (c) ln vs plot. (d) Temporal photoresponse of the BMWCNT-ZnO hybrid structures when illuminated by UV light (wavelength = 365 nm, power = 0.3 mW/cm, V = 2.0 V).

Image of FIG. 4.

Click to view

FIG. 4.

(a) Schematic of a FET structure. (b & c) Typical output and transfer characteristics of -type FET behavior of a BMWCNT-ZnO hybrid structure. (d) Temporal photoresponse of FET structures. UV is on at A with = 0. Along B to C, is increased from 0 to −12 V and kept at = −12 V. Along B to D, is increased from 0 to 12 V and kept at = 12 V. (e) Temporal photoresponse at three gate voltages (12, 0, −12 V). (f) Normalised current decay curves. is the current after the exposure of UV light.

Image of FIG. 5.

Click to view

FIG. 5.

Schematic of the charge arrangement for (a & b) before and after UV irradiation for positive gate voltage and (c & d) before and after UV irradiation for negative gate voltage.

Image of FIG. 6.

Click to view

FIG. 6.

Schematic of the band diagram. (a) before and (b) after BMWCNT-ZnO contact.

Tables

Generic image for table

Click to view

Table I.

Summary of the photoresponse of a CNT-ZnO FET at different . * represents for a different FET.

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4817837
2013-08-02
2014-04-17

Abstract

We report on multifunctional devices based on CNT arrays-ZnO nanowires hybrid architectures. The hybrid structure exhibit excellent high current Schottky like behavior with ZnO as -type and an ideality factor close to the ideal value. Further the CNT-ZnO hybrid structures can be used as high current -type field effect transistors that can deliver currents of the order of milliamperes and also can be used as ultraviolet detectors with controllable current on-off ratio and response time. The -type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4817837.html;jsessionid=g1rm1kl6s00m6.x-aip-live-01?itemId=/content/aip/journal/adva/3/8/10.1063/1.4817837&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4817837
10.1063/1.4817837
SEARCH_EXPAND_ITEM