1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4818119
1.
1. G. I. Meijer, Science 319, 1625 (2008).
http://dx.doi.org/10.1126/science.1153909
2.
2.International Technology Roadmap for Semiconductors, ITRS 2009 edition (2009).
3.
3. Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, Phys. Rev. Lett. 98, 146403 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.146403
4.
4. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nature Mater. 5, 312 (2006).
http://dx.doi.org/10.1038/nmat1614
5.
5. S. Clima, Y. Y. Chen, R. Degraeve, M. Mees, K. Sankaran, B. Govoreanu, M. Jurczak, S. De Gendt, and G. Pourtois, Appl. Phys. Lett. 100, 133102 (2012).
http://dx.doi.org/10.1063/1.3697690
6.
6. J. J. Ke, Z. J. Liu, C. F. Kang, S. J. Lin, and J. H. He, Appl. Phys. Lett. 99, 192106 (2011).
http://dx.doi.org/10.1063/1.3659296
7.
7. Y. H. Do, J. S. Kwak, Y. C. Bae, K. Jung, H. Im, and J. P. Hong, Appl. Phys. Lett. 95, 093507 (2009).
http://dx.doi.org/10.1063/1.3224179
8.
8. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
9.
9. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
10.
10. A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
11.
11. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser et al., J. Appl. Phys. 98, 033715 (2005).
http://dx.doi.org/10.1063/1.2001146
12.
12. R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Adv. Mater. 22, 4819 (2010).
http://dx.doi.org/10.1002/adma.201001872
13.
13. L. Yang, C. Kuegeler, K. Szot, A. Ruediger, and R. Waser, Appl. Phys. Lett. 95, 013109 (2009).
http://dx.doi.org/10.1063/1.3167810
14.
14. Y. M. Du, H. Pan, S. J. Wang, T. Wu, Y. P. Feng, J. S. Pan, A. T. S. Wee, ACS Nano 6, 2517 (2012).
http://dx.doi.org/10.1021/nn204907t
15.
15. M. Nonnemmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).
http://dx.doi.org/10.1063/1.105227
16.
16. W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Surf. Sci. Rep. 66, 1 (2011).
http://dx.doi.org/10.1016/j.surfrep.2010.10.001
17.
17. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han et al., Nat. Nanotechnol. 5, 148 (2010).
http://dx.doi.org/10.1038/nnano.2009.456
18.
18. H. D. Lee, B. Magyari-Köpe, and Y. Nishi, Phys. Rev. B 81, 193202 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.193202
19.
19.Using a CAFM under high-vacuum conditions, filaments size in 2-4 nm diameter has also been reported,4 which means that each conducting spot could even be further composed of multiple conducting filaments in smaller sizes.
20.
20. A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008).
http://dx.doi.org/10.1016/j.surfrep.2008.10.001
21.
21. Y. Matsui, M. Suga, M. Hiratani, H. Miki, and Y. Fujisaki, Jpn. J. Appl. Phys. 36, L1239 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1239
22.
22. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075508
23.
23. J. Philibert, Atom Movements — Diffusion and Mass Transport in Solids (Editions de Physique, 1991).
24.
24. K. Shibuya, R. Dittmann, S. B. Mi, and R. Waser, Adv. Mater. 22, 411 (2010).
http://dx.doi.org/10.1002/adma.200901493
25.
25. J. Y. Ye, Y. Q. Li, J. Gao, H. Y. Peng, S. X. Wu, and T. Wu, Appl. Phys. Lett. 97, 132108 (2010).
http://dx.doi.org/10.1063/1.3494267
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818119
Loading
/content/aip/journal/adva/3/8/10.1063/1.4818119
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4818119
2013-08-01
2015-07-05

Abstract

The resistive switching characteristics of TiO thin films were investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM). The as-prepared TiO thin films were modulated into higher and lower resistance states by applying a local electric field. We showed that the resistive switching results from charge injection and release assisted by electro-migration of oxygen ions. An integrated model combined with filamentary and interfacial effects was utilized to elucidate the experimentally observed phenomenon.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4818119.html;jsessionid=5i454k9n4m19n.x-aip-live-02?itemId=/content/aip/journal/adva/3/8/10.1063/1.4818119&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818119
10.1063/1.4818119
SEARCH_EXPAND_ITEM