1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Non-Debye heat capacity formula refined and applied to GaP, GaAs, GaSb, InP, InAs, and InSb
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/8/10.1063/1.4818273
1.
1. Y. S. Touloukian and E. H. Buyco, Specific Heat of Nonmetallic Solids, Thermophysical Properties of Matter, Vols. 4 and 5 (IFI/Plenum, New York-Washington, 1970).
2.
2. O. Madelung (ed.), Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group III, Vols. 17a/b, 22a/b, and 41a/b (Springer-Verlag, Berlin, 1982, 1989, 1999–2002).
3.
3. S. Adachi, Handbook on Physical Properties of Semiconductors, Vols. 1, 2, and 3 (Kluwer Academic Publishers, Boston, Dordrecht, New York, London, 2004).
4.
4. O. Knacke, O. Kubashewski, and K. Hesselmann, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, Heidelberg, 1991)
5.
5. I. Barin, Thermochemical Data of Pure Substances, 3rd edition (VCH Verlagsgesellschaft mbH, Weinheim, New York, Basel, Cambridge, Tokyo, 1995).
6.
6. I. Hurtado and D. Neuschütz (eds.), Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Group IV, Vol. 19, Thermodynamic Properties of Inorganic Materials), Subvolume A, Parts 1–4 (Springer-Verlag, Berlin, Heidelberg, 1999).
7.
7. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932)
http://dx.doi.org/10.1021/ja01347a029
8.
8. K. K. Kelley, U.S. Bureau of Mines, Bull. 584 (1960)
9.
9. L. B. Pankratz, Bureau of Mines (USA), Report of Investigations 6592 (1965)
10.
10. K. Yamaguchi, K. Itagaki, and A. Yazawa, J. Jpn. Inst. Metals 53, 764 (1989)
11.
11. K. Itagaki and K. Yamaguchi, Thermochimica Acta 163, 1 (1990)
http://dx.doi.org/10.1016/0040-6031(90)80374-8
12.
12. V. M. Glazov, A. S. Malkova, L. M. Pavlova, and A. S. Pashinkin, Russ. J. Phys. Chem. 74, 145 (2000);
12.V. M. Glazov, A. S. Malkova, L. M. Pavlova, and A. S. Pashinkin, [Zh. Fiz. Khimii 74, 203 (2000)].
13.
13. V. M. Glazov, A. S. Malkova, and A. S. Pashinkin, Russ. J. Phys. Chem. 74, 689 (2000);
13.V. M. Glazov, A. S. Malkova, and A. S. Pashinkin, [Zh. Fiz. Khimii 74, 789 (2000)].
14.
14. V. M. Glazov and A. S. Pashinkin, Inorg. Mater. 36, 225 (2000);
http://dx.doi.org/10.1007/BF02757926
14.V. M. Glazov and A. S. Pashinkin, [Neorgan. Mater. 36, 289 (2000).]
15.
15. A. S. Pashinkin and A. S. Malkova, Russ. J. Phys. Chem. 77, 1889 (2003);
15.A. S. Pashinkin and A. S. Malkova, [Zh. Fiz. Khimii 77, 2097 (2003)].
16.
16. A. S. Pashinkin, A. S. Malkova, and M. S. Mikhailova, Russ. J. Phys. Chem. 83, 1051 (2009);
http://dx.doi.org/10.1134/S0036024409060338
16.A. S. Pashinkin, A. S. Malkova, and M. S. Mikhailova, [Zh. Fiz. Khim. 83, 1191 (2009)].
17.
17. A. S. Pashinkin, V. A. Fedorov, A. S. Malkova, and M. S. Mikhailova, Inorg. Mater. 46, 1007 (2010);
http://dx.doi.org/10.1134/S0020168510090165
17.A. S. Pashinkin, V. A. Fedorov, A. S. Malkova, and M. S. Mikhailova, [Neorgan. Mater. 46, 1121 (2010)].
http://dx.doi.org/10.1134/S0020168510100171
18.
18. C. Chatillon, I. Ansara, A. Watson, and B. B. Argent, CALPHAD 14, 203 (1990)
http://dx.doi.org/10.1016/0364-5916(90)90021-Q
19.
19. R. H. Cox and M. J. Pool, J. Chem. Eng. Data 12, 247 (1967)
http://dx.doi.org/10.1021/je60033a021
20.
20. B. D. Lichter and P. Sommelet, Trans. Metall. Soc. AIME 245, 1021 (1969).
21.
21. B. D. Lichter and P. Sommelet, Trans. Metall. Soc. AIME 245, 99 (1969).
22.
22. A. Einstein, Ann. Phys. 22, 180 (1907).
23.
23. P. Debye, Ann. Phys. 39, 789 (1912).
http://dx.doi.org/10.1002/andp.19123441404
24.
24. M. Blackman, in Handbuch der Physik, Band VI, Teil 1 (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955), p. 325.
25.
25. P. H. Keesom and N. Pearlman, in Encyclopadia of Physics (Handbuch der Physik), vol. XIV: Low temperature physics I (Kältephysik I), ed. by S. Flügge (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956), p. 282.
26.
26. J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).
27.
27. E. S. R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966).
28.
28. W. T. Berg and J. B. Morrison, Proc. Roy. Soc. A 242, 467 (1957).
http://dx.doi.org/10.1098/rspa.1957.0189
29.
29. T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. Soc. A 242, 478 (1957).
http://dx.doi.org/10.1098/rspa.1957.0190
30.
30. T. H. K. Barron and J. A. Morrison, Proc. Roy. Soc. A 256, 427 (1960).
http://dx.doi.org/10.1098/rspa.1960.0117
31.
31. T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. Soc. A 250, 70 (1959).
http://dx.doi.org/10.1098/rspa.1959.0051
32.
32. T. C. Cetas, C. R. Tilford, and C. A. Swenson, Phys. Rev. 174, 835 (1968).
http://dx.doi.org/10.1103/PhysRev.174.835
33.
33. M. Sanati, S. K. Estreicher, and M. Cardona, Solid State Commun. 131, 229 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.04.043
34.
34. M. Cardona, R. K. Kremer, M. Sanati, S. K. Estreicher, and T. R. Anthony, Solid State Commun. 133, 465 (2005).
http://dx.doi.org/10.1016/j.ssc.2004.11.047
35.
35. A. Gibin, G. G. Devyatykh, A. V. Gusev, R. K. Kremer, M. Cardona, and H.-J. Pohl, Solid State Commun. 133, 569 (2005).
http://dx.doi.org/10.1016/j.ssc.2004.12.047
36.
36. R. K. Kremer, M. Cardona, E. Schmitt, J. Blumm, S. K. Estreicher, M. Sanati, M. Boćkowski, I. Grzegory, T. Suski, and A. Jeżowski, Phys. Rev. B 72, 075209 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075209
37.
37. R. Pässler, J. Appl. Phys. 110, 043530 (2011).
http://dx.doi.org/10.1063/1.3622668
38.
38. S. N. Lykov and I. A. Chernik, Fiz. Tverd. Tela 24, 3102 (1982).
39.
39. J. Serrano, R. K. Kremer, M. Cardona, G. Siegle, A. H. Romero, and R. Lauck, Phys. Rev. B 73, 094303 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094303
40.
40. M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, J. Serrano, and A. H. Romero, Phys. Rev. B 76, 075211 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075211
41.
41. M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, A. Muñoz, and A. H. Romero, Phys. Rev. B 80, 195204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195204
42.
42. M. Cardona, R. K. Kremer, R. Lauk, G. Siegle, A. Muñoz, A. H. Romero, and A. Schindler, Phys. Rev. B 81, 075207 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075207
43.
43. R. Pässler, J. Phys. Chem. Solids 72, 1296 (2011).
http://dx.doi.org/10.1016/j.jpcs.2011.07.026
44.
44. R. K. Kremer, M. Cardona, R. Lauk, G. Siegle, and A. H. Romero, Phys. Rev. B 85, 035208 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035208
45.
45. R. Pässler, Phys. Status Solidi B 247, 77 (2010).
http://dx.doi.org/10.1002/pssb.200945158
46.
46. J. E. Desnoyers and J. A. Morrison, Phil. Mag. 3, 42 (1958).
http://dx.doi.org/10.1080/14786435808243223
47.
47. P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Phil. Mag. 4, 273 (1959).
http://dx.doi.org/10.1080/14786435908233340
48.
48. G. Dolling and R. A. Cowley, Proc. Phys. Soc. (London) 88, 463 (1966).
http://dx.doi.org/10.1088/0370-1328/88/2/318
49.
49. W. Schnelle and E. Gmelin, J. Phys.: Condens. Matter 13, 6087 (2001).
http://dx.doi.org/10.1088/0953-8984/13/27/303
50.
50. R. Pässler, Phys. Status Solidi B 244, 4605 (2007), including the supporting information (available in electronic form via http://www.wiley-vch.de/contents/jc_2232/2007/4605_s.pdf).
http://dx.doi.org/10.1002/pssb.200743174
51.
51. U. Piesbergen, Z. Naturforsch. 18a, 141 (1963).
52.
52. U. Piesbergen, Semiconductors and Semimetals 2, 49 (1966).
http://dx.doi.org/10.1016/S0080-8784(08)60161-1
53.
53. R. Banerjee and Y. P. Varshni, Can. J. Phys. 47, 451 (1969).
http://dx.doi.org/10.1139/p69-059
54.
54. S. C. Abrahams and F. S. L. Hsu, J. Chem. Phys. 63, 1162 (1975).
http://dx.doi.org/10.1063/1.431443
55.
55. M. K. Farr, J. G. Traylor, and S. K. Sinha, Phys. Rev. B 11, 1587 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.1587
56.
56. M. Vandevyver and P. Plumelle, J. Phys. Chem. Solids 38, 765 (1977).
http://dx.doi.org/10.1016/0022-3697(77)90071-3
57.
57. A. F. Demidenko, V. I. Koshchenko, A. S. Pashinkin, and V. E. Yachmenev, Inorg. Mater. 17, 677 (1981);
57.A. F. Demidenko, V. I. Koshchenko, A. S. Pashinkin, and V. E. Yachmenev, [Izv. Akad. Nauk SSSR Neorgan. Materialy 17, 949 (1981)].
58.
58. N. N. Sirota, V. V. Novikov, and A. M. Antiukhov, “Doklady Akad. Nauk SSSR,” Ser. Mat./Fiz. 263, 96 (1982).
59.
59. N. N. Sirota, A. M. Antiukhov, V. V. Novikov, and A. A. Sidorov, “Doklady Akad. Nauk SSSR,” Ser. Mat./Fiz. 266, 105 (1982).
60.
60. N. N. Sirota, A. M. Antyukhov, V. V. Novikov, V. A. Fyodorov, Cryst. Res. Technol. 17, 279 (1982).
http://dx.doi.org/10.1002/crat.2170170302
61.
61. H. M. Kagaya and T. Soma, Phys. Status Solidi B 134, K101 (1986).
http://dx.doi.org/10.1002/pssb.2221340249
62.
62. V. V. Novikov, Russ. J. Phys. Chem. 80, 1456 (2006);
http://dx.doi.org/10.1134/S0036024406090172
62.V. V. Novikov, [Zh. Fiz. Khim. 80, 1645 (2006)].
63.
63. M. Born Atomtheorie des festen Zustandes (Teubner, Leipzig-Berlin, 1923).
64.
64. E. Grüneisen, in Handbuch der Physik, eds. H. Geiger and K. Scheel, Band X, Thermische Eigenschaften der Stoffe (Springer-Verlag, Berlin, 1926), p. 1.
65.
65. E. Schrödinger, in Handbuch der Physik, eds. H. Geiger and K. Scheel, Band X, Thermische Eigenschaften der Stoffe (Springer-Verlag, Berlin, 1926), p. 275.
66.
66. A. Euken, Wien-Harms Handbuch der Experimentalphysik, Bd. 6 (I) (1929).
67.
67. G. Leibfried and W. Brenig, Z. Phys. 134, 451 (1953).
http://dx.doi.org/10.1007/BF01332748
68.
68. A. F. Demidenko, V. I. Koshchenko, Z. S. Medvedeva, and A. F. Radchenko, “Izv. Akad Nauk SSSR,” Neorg. Mater. 11, 2117 (1975).
69.
69. A. D. Mah, E. G. King, W. W. Weller, and A. U. Christensen, Bur. Mines Rep. Invest. (USA) RI-5716, 1 (1961).
70.
70. B. A. Danilchenko, T. Paszkiewicz, S. Wolski, A. Jeżowski, and T. Plackowski, Appl. Phys. Lett. 89, 061901 (2006).
http://dx.doi.org/10.1063/1.2335373
71.
71. D. Sedmidubský and J. Leitner, J. Cryst. Growth 286, 66 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.09.043
72.
72. D. Sedmidubský, J. Leitner, P. Svoboda, Z. Sofer, and J. Macháček, J. Therm. Anal. Calorim. 95, 403 (2009).
http://dx.doi.org/10.1007/s10973-008-9246-1
73.
73. P. Svoboda, D. Sedmidubský, and J. Leitner, Int. J. Mat. Res. (formerly Z. Metallkd.) 100, 1246 (2009).
http://dx.doi.org/10.3139/146.110181
74.
74. R. Pässler, Phys. Status Solidi B 248, 904 (2011) including a supporting information (available in electronic form via http://onlinelibrary.wiley.com/doi/10.1002/pssB201046248/suppinfo)
http://dx.doi.org/10.1002/pssb.201046248
75.
75. P. Svoboda, P. Javorský, M. Diviš, V. Sechovský, F. Honda, G. Oomi, and A. A. Menovsky, Phys. Rev B 63, 212408 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.212408
76.
76. W. N. Lawless and T. K. Gupta, J. Appl. Phys. 60, 607 (1986).
http://dx.doi.org/10.1063/1.337455
77.
77. R. A. Slack, A. A. Maradudin, and G. H. Weiss, Phys. Rev. 124, 717 (1961).
http://dx.doi.org/10.1103/PhysRev.124.717
78.
78. A. A. Maradudin and R. F. Wallis, Phys. Rev. 148, 945 (1966).
http://dx.doi.org/10.1103/PhysRev.148.945
79.
79. L. J. Porter, J. Li, and S. Yip, J. Nuclear Mat. 246, 53 (1997).
http://dx.doi.org/10.1016/S0022-3115(97)00035-4
80.
80. H. Neumann, Cryst. Res. Technol. 39, 245 (2004).
http://dx.doi.org/10.1002/crat.200310178
81.
81. H. Neumann, J. Łażevski, P. T. Jochym, and K. Parlinski, Phys. Rev. B 75, 224301 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.224301
82.
82. R. Pässler, Phys. Status Solidi B 245, 1133 (2008).
http://dx.doi.org/10.1002/pssb.200743480
83.
83. R. Pässler, Phys. Status Solidi B 243, 2719 (2006).
http://dx.doi.org/10.1002/pssb.200642284
84.
84. R. Pässler, J. Appl. Phys. 101, 093513 (2007).
http://dx.doi.org/10.1063/1.2721749
85.
85. H. Thirring, Phys. Z. 14, 867 (1913);
85.H. Thirring, Phys. Z. 15, 180 (1914).
86.
86. J. C. Holste, Phys. Rev. B 6, 2495 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.2495
87.
87. G. K. White and S. J. Collocott, J. Phys. Chem. Ref. Data 13, 1251 (1984).
http://dx.doi.org/10.1063/1.555728
88.
88. T. H. K. Barron and G. K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Kluwer Academic / Plenum Publishers, New York, 1999).
89.
89. S. Sönmezoğlu, Int. J. Mod. Phys. 22, 5349 (2008).
http://dx.doi.org/10.1142/S0217979208049418
90.
90. B. A. Mamedov, E. Eser, H. Koç, and I. M. Askerov, Int. J. Thermophys. 30, 1048 (2009).
http://dx.doi.org/10.1007/s10765-009-0601-7
91.
91. V. V. Tarassov and B. F. Demidenko, Phys. Status Solidi B 30, 147 (1968).
http://dx.doi.org/10.1002/pssb.19680300118
92.
92. H. Neumann, G. Kühn, and W. Möller, Phys. Status Solidi B 144, 565 (1987).
http://dx.doi.org/10.1002/pssb.2221440215
93.
93. B. J. Dash, B. Finch, and P. J. Gardner, J. Chem. Eng. Data 19, 113 (1974).
http://dx.doi.org/10.1021/je60061a013
94.
94. V. Novikov, Ph. D. thesis, Univ. of Bryansk, Russia, 1984.
95.
95. M. Ahrens and J. Maier, Thermochimica Acta 443, 189 (2006).
http://dx.doi.org/10.1016/j.tca.2006.01.020
96.
96. I. Zięborak-Tomaszkiewicz, R. Świerzewski, and P. Gierycz, J. Therm. Anal. Calorim. 91, 649 (2008).
http://dx.doi.org/10.1007/s10973-007-8509-6
97.
97. U. C. Boehnke, G. Kühn, F. I. Frolova, I. E. Paukov, and H. Neumann, J. Therm. Analysis 33, 205 (1988).
http://dx.doi.org/10.1007/BF01914601
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818273
Loading
/content/aip/journal/adva/3/8/10.1063/1.4818273
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4818273
2013-08-06
2014-09-21

Abstract

Characteristic non-Debye behaviors of low-temperature heat capacities of GaP, GaAs, GaSb, InP, InAs, and InSb, which are manifested above all in form of non-monotonic behaviors (local maxima) of the respective ()/ curves in the cryogenic region, are described by means of a refined version of a recently proposed low-to-high-temperature interpolation formula of non-Debye type. Least-mean-square fittings of representative () data sets available for these materials from several sources show excellent agreements, from the liquid-helium region up to room temperature. The results of detailed calculations of the respective material-specific Debye temperature curves, Θ(), are represented in graphical form. The strong, non-monotonic variations of Θ() values confirm that it is impossible to provide reasonable numerical simulations of measured () dependences in terms of fixed Debye temperatures. We show that it is possible to describe in good approximation the complete Debye temperature curves, from the cryogenic region up to their definitive disappearance (dropping to 0) in the high temperature region, by a couple of unprecedented algebraic formulas. The task of constructing physically adequate prolongations of the low-temperature () curves up to melting points was strongly impeded by partly rather large differences (up to an order of 10 J/(K·mol)) between the high-temperature data sets presented in different research papers and/or data reviews. Physically plausible criteria are invoked, which enabled an a priori rejection of a series of obviously unrealistic high-temperature data sets. Residual uncertainties for GaAs and InAs could be overcome by re-evaluations of former enthalpy data on the basis of a novel set of properly specified four-parameter polynomial expressions applying to large regions, from moderately low temperatures up to melting points. Detailed analytical and numerical descriptions are given for the anharmonicity-related differences of isobaric vs. isochoric (harmonic) parts of heat capacities. Relevant sets of empirical parameters and representative collections of heat capacity and Debye temperature values for all materials under study are presented in tabulated form.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4818273.html;jsessionid=23sqkrot0w58x.x-aip-live-06?itemId=/content/aip/journal/adva/3/8/10.1063/1.4818273&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Non-Debye heat capacity formula refined and applied to GaP, GaAs, GaSb, InP, InAs, and InSb
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818273
10.1063/1.4818273
SEARCH_EXPAND_ITEM