1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A novel mode of current switching dependent on activated charge transport
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/3/8/10.1063/1.4818275
1.
1. C. A. Mack, “Fifty years of Moore's law,” IEEE Transactions on Semiconductor Manufacturing 24, 202207 (2011).
http://dx.doi.org/10.1109/TSM.2010.2096437
2.
2. J. E. Lilienfeld, “Electric current control mechanism,” Canadian patent CA 272437 (19/07/1927).
3.
3. J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Physical Review 74, 230231 (1948).
http://dx.doi.org/10.1103/PhysRev.74.230
4.
4. W. Shockley, M. Sparks, and G. K. Teal, “p-n junction transistors,” Physical Review 83, 151162 (1951).
http://dx.doi.org/10.1103/PhysRev.83.151
5.
5. Y. Yamamoto, “Technological innovation of thin-Film transistors: technology development, history, and future,” Japanese Journal of Applied Physics 51, 060001 (2012).
http://dx.doi.org/10.1143/JJAP.51.060001
6.
6. D. T. Britton and M. Härting, “Printed nanoparticulate composites for silicon thick film electronics,” Pure and Applied Chemistry 78, 17231739 (2006).
http://dx.doi.org/10.1351/pac200678091723
7.
7. M. Härting, J. Zhang, D. R. Gamota, and D. T. Britton, “Fully printed field effect transistors,” Applied Physics Letters 94, 193509 (2009).
http://dx.doi.org/10.1063/1.3126958
8.
8. E. Platania et al., “A physics based model for a SiC JFET accounting for electric-field-dependent mobility,” IEEE Transactions on Industry Applications 47, 199211 (2011).
http://dx.doi.org/10.1109/TIA.2010.2090843
9.
9. M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Applied Physics Letters 62, 17861787 (1993).
http://dx.doi.org/10.1063/1.109549
10.
10. J. Bardeen and W. H. Brattain, “Physical principles involved in transistor action,” Physical Review 75, 12081225 (1949).
http://dx.doi.org/10.1103/PhysRev.75.1208
11.
11. D. T. Britton, E. A. Odo, G. Goro Gonfa, E. O. Jonah, and E. O. M. Härting, “Size distribution and surface characteristics of silicon nanoparticles,” Journal of Applied Crystallography 42, 448456 (2009).
http://dx.doi.org/10.1107/S0021889809011947
12.
12. D. K. Rai, G. Beaucage, E. O. Jonah, D. T. Britton, S. Sukumaran, S. Chopra, G. Goro Gonfa, and G. M. Härting, “Quantitative investigations of aggregate systems,” Journal of Chemical Physics 137, 044311 (2012).
http://dx.doi.org/10.1063/1.4737947
13.
13. E. O. Jonah, D. T. Britton, P. Beaucage, D. K. Rai, G. Beaucage, B. Magunje, J. Ilavsky, M. R. Scriba, and M. Härting, “Topological investigation of electronic silicon nanoparticulate aggregates using ultra small angle X-ray scattering,” Journal of Nanoparticle Research 14, 1249 (2012).
http://dx.doi.org/10.1007/s11051-012-1249-y
14.
14. U. Männl, A. Chuvilin, B. Magunje, E. O. Jonah, M. Härting, and D. T. Britton, “Interfacial and network characteristics of silicon nanoparticle layers used in printed electronics,” Japanese Journal of Applied Physics 52, 05DA11 (2013).
15.
15. K. BockPolymer Electronics Systems – Polytronics,” Proceedings of the IEEE 93, 14001406 (2005).
16.
16. A. S. Tayi et al.Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes,” Nature 488, 485489 (2012).
http://dx.doi.org/10.1038/nature11395
17.
17. N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel polymer field effect transistor,” Science 299, 18811884 (2003).
http://dx.doi.org/10.1126/science.1081279
18.
18. S. K. Banerjee et al.Graphene for CMOS and Beyond CMOS Applications,” Proceedings of the IEEE 98, 20382046 (2010).
19.
19. P. Avouris et al.Carbon nanotube electronics,” Proceedings of the IEEE 91, 17721784 (2003).
20.
20. Y. Awano et al.Carbon Nanotubes for VLSI: Interconnect and Transistor ApplicationsProceedings of the IEEE 98, 20152031 (2010).
21.
21. M. C. McAlpine et al.High-Performance Nanowire Electronics and Photonics and Nanoscale Patterning on Flexible Plastic Substrates,” Proceedings of the IEEE 93, 13571363 (2005).
22.
22. D. J. Millron et al.Colloidal nanocrystal heterostructures with linear and branched topology,” Nature 430, 190195 (2004).
http://dx.doi.org/10.1038/nature02695
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818275
Loading
/content/aip/journal/adva/3/8/10.1063/1.4818275
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4818275
2013-08-06
2015-03-29

Abstract

We demonstrate a fully printed transistor with a planar triode geometry, using nanoparticulate silicon as the semiconductor material, which has a unique mode of operation as an electrically controlled two-way (double throw) switch. A signal applied to the base changes the direction of the current from between the collector and base to between the base and emitter. We further show that the switching characteristic results from the activated charge transport in the semiconductor material, and that it is independent of the dominant carrier type in the semiconductor and the nature of the junction between the semiconductor and the three contacts. The same equivalent circuit, and hence similar device characteristics, can be produced using any other material combination with non-linear current-voltage characteristics, such as a suitable combination of semiconducting and conducting materials, such that a Schottky junction is present at all three contacts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4818275.html;jsessionid=1f0f3u58gsjba.x-aip-live-03?itemId=/content/aip/journal/adva/3/8/10.1063/1.4818275&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A novel mode of current switching dependent on activated charge transport
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818275
10.1063/1.4818275
SEARCH_EXPAND_ITEM