Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4818591
1.
1. G. Wang, S. T. Yau, K. Mantey, and M. H. Nayfeh, Opt. Commun. 281, 1765 (2008).
http://dx.doi.org/10.1016/j.optcom.2007.07.070
2.
2. X. Wang, R. Q. Zhang, T. A. Niehaus, and Th. Frauenheim, J. Phys. Chem. C 111, 2394 (2007).
http://dx.doi.org/10.1021/jp065704v
3.
3. X. Wang, R. Q. Zhang, S. T. Lee, Th. Frauenheim, and T. A. Niehaus, Appl. Phys. Lett. 93, 243120 (2008).
http://dx.doi.org/10.1063/1.3049134
4.
4. A. S. Heintza, M. J. Finkb, and B. S. Mitchella, Appl. Organometal. Chem. 24, 236 (2010).
http://dx.doi.org/10.1002/aoc.1602
5.
5. M. Hirasawa, T. Orii, and T. Seto, Appl. Phys. Lett. 88, 093119 (2006).
http://dx.doi.org/10.1063/1.2182018
6.
6. D. K. Yu, R. Q. Zhang, and S. T. Lee, Phys. Rev. B 65, 245417 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.245417
7.
7. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
8.
8. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 145, 163 (2008).
http://dx.doi.org/10.1038/nature06381
9.
9. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard III, and J. R. Heath, Nature 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
10.
10. W. L. Liu, T. Borca-Tasciuc, G. Chen, J. L. Liu, and K. L. Wang, J. Nanosci. Nanotechnol. 1, 39 (2001).
http://dx.doi.org/10.1166/jnn.2001.013
11.
11. T. G. Desai, Appl. Phys. Lett. 98, 193107 (2011).
http://dx.doi.org/10.1063/1.3590265
12.
12. P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B 65, 144306 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144306
13.
13. L. Miao, V. R. Bhethanabotla, and B. Joseph, Phys. Rev. B 72, 134109 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.134109
14.
14. R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
http://dx.doi.org/10.1088/0034-4885/29/1/306
15.
15. J. Tersoff, Phys. Rev. B 39, 5566 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.5566
16.
16. P. Mélinon, P. Kéghélian, B. Prével, A. Perez, G. Guiraud, J. LeBrusq, J. Lermé, M. Pellarin, and M. Broyer, J. Chem. Phys. 107, 10278 (1997).
http://dx.doi.org/10.1063/1.474168
17.
17. H. Hofmeister, J. Dutta, and H. Hofmann, Phys. Rev. B 54, 2856 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.2856
18.
18. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Phys. Rev. B 62, 15942 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.15942
19.
19. L. J. Porter, S. Yip, M. Yamaguchi, H. Kaburaki, and M. Tang, J. Appl. Phys. 81, 96 (1997).
http://dx.doi.org/10.1063/1.364102
20.
20. J. Chen, G. Zhang, and B. Li, Phys. Lett. A 374, 2392 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.03.067
21.
21. H. P. Li, A. De Sarkar, and R. Q. Zhang, EPL 96, 56007 (2011).
http://dx.doi.org/10.1209/0295-5075/96/56007
22.
22. K. C. Fang, C. I. Weng, and S. P. Ju, Nanotechnol. 17, 3909 (2006).
http://dx.doi.org/10.1088/0957-4484/17/15/049
23.
23. B. Y. Cao and Z. Y. Guo, J. Appl. Phys. 102, 053503 (2007).
http://dx.doi.org/10.1063/1.2775215
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818591
Loading
/content/aip/journal/adva/3/8/10.1063/1.4818591
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4818591
2013-08-12
2016-12-04

Abstract

We investigate the size effects on the structures and thermal conductivity of silicon nanoclusters (SiNCs) using molecular dynamics simulations. We demonstrate that as the diameter of the SiNCs increases from 1.80 nm to 3.46 nm, the cluster structure changes from an amorphous state to a crystalline state at 300 K, which is in good agreement with the experimental findings. Our calculated thermal conductivity of the SiNCs shows a size-dependent effect due to the remarkable phonon-boundary scattering and can be about three orders of magnitude lower than that of bulk Si.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4818591.html;jsessionid=VCmzEnMNFojafGvO00eYAv9k.x-aip-live-06?itemId=/content/aip/journal/adva/3/8/10.1063/1.4818591&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4818591&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4818591'
Right1,Right2,Right3,