Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4818971
1.
1. V. Thangadurai, H. Kaack, and W. Weppner, J. Am. Ceram. Soc. 86, 437 (2003).
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03318.x
2.
2. V. Thangadurai and W. Weppner, J. Am. Ceram. Soc. 88, 411 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2005.00060.x
3.
3. V. Thangadurai and W. Weppner, Adv. Funct. Mater. 15, 107 (2005).
http://dx.doi.org/10.1002/adfm.200400044
4.
4. V. Thangadurai and W. Weppner, J. Solid State Chem. 179, 974 (2006).
http://dx.doi.org/10.1016/j.jssc.2005.12.025
5.
5. R. Murugan, V. Thangadurai, and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007).
http://dx.doi.org/10.1002/anie.200701144
6.
6. R. Murugan, W. Weppner, P. Schmid-Beurmann, and V. Thangadurai, Mater. Sci. Eng. B 143, 14 (2007).
http://dx.doi.org/10.1016/j.mseb.2007.07.009
7.
7. R. Murugan, V. Thangadurai, and W. Weppner, Ionics 13, 195 (2007).
http://dx.doi.org/10.1007/s11581-007-0097-8
8.
8. R. Murugan, W. Weppner, P. Schmid-Beurmann, and V. Thangadurai, Mater. Res. Bull. 43, 2579 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.10.035
9.
9. R. Murugan, V. Thangadurai, and W. Weppner, Appl. Phys. A 91, 615 (2008).
http://dx.doi.org/10.1007/s00339-008-4494-2
10.
10. T. Zaib, M. Ortnet, R. Murugan, and W. Weppner, Ionics 16, 855 (2009).
http://dx.doi.org/10.1007/s11581-010-0486-2
11.
11. J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, J. Solid State Chem. 182, 2046 (2009).
http://dx.doi.org/10.1016/j.jssc.2009.05.020
12.
12. M. Kotobuki, K. Kanamura, Y. Sato, and T. Yoshida, J. Power Sources 196, 7750 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2011.04.047
13.
13. S. Kumazaki, Y. Iriyama, K. H. Kim, R. Murugan, K. Tanabe, K. Yamamoto, T. Hirayama, and Z. Ogumi, Electrochem. Commun. 13, 509 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.02.035
14.
14. C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, and W. Weppner, Inorg. Chem. 50, 1089 (2011).
http://dx.doi.org/10.1021/ic101914e
15.
15. A. Duevel, A. Kuhn, L. Robben, M. Wilkening, and P. Heitjans, J. Phys. Chem. C 116, 15192 (2012).
http://dx.doi.org/10.1021/jp301193r
16.
16. K. Saranya, C. Deviannapoorani, L. Dhivya, S. Ramakumar, N. Janani, and R. Murugan, Materials Lett. 77, 57 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.03.002
17.
17. N. Janani, S. Ramakumar, and R. Murugan, Fast Lithium Ion Conduction in Zirconium Containing Garnet Structured Ceramic Electrolyte: International Ceramic Congress (ICC3), Osaka, Japan, Nov. (2010) S9A.
18.
18. Y. Li, C. A. Wang, H. Xie, J. Cheng, and J. B. Goodenough, Electrochem. Commun. 13, 1289 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.07.008
19.
19. A. Logéat, T. Köhler, U. Eisele, B. Stiaszny, A. Harzer, M. Tovar, A. Senyshyn, H. Ehrenberg, and B. Kozinsky, Solid State Ionics 206, 33 (2012).
http://dx.doi.org/10.1016/j.ssi.2011.10.023
20.
20. Y. Wang and W. Lai, Electrochem. Solid-State Lett. 15, A68 (2012).
http://dx.doi.org/10.1149/2.024205esl
21.
21. S. Ohta, T. Kobayashi, J. Seki, and T. Asaoka, J. Power Sources 202, 332 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2011.10.064
22.
22. N. Sumaletha, F. Ramezanipour, and V. Thangadurai, J. Phys. Chem. C 116, 20154 (2012).
http://dx.doi.org/10.1021/jp304737x
23.
23. J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, J. Power Sources 206, 315 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2012.01.131
24.
24. M. Huang, A. Dumon, and C. W. Nan, Electrochem. Commun. 21, 62 (2012).
http://dx.doi.org/10.1016/j.elecom.2012.04.032
25.
25. R. Murugan, S. Ramakumar, and N. Janani, Electrochem. Commun. 13, 1373 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.08.014
26.
26. H. Xie, J. A. Alonso, Y. Li, M. T. Fernandez-Díaz, and J. B. Goodenough, Chem. Mater. 23, 3587 (2011).
http://dx.doi.org/10.1021/cm201671k
27.
27. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
http://dx.doi.org/10.1107/S0567739476001551
28.
28. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983).
29.
29. D. P. Almond, G. K. Duncan, and A. R. West, Solid State Ionics 9, 277 (1983).
http://dx.doi.org/10.1016/0167-2738(83)90247-3
30.
30. A. Pan and A. Ghosh, Phys. Rev. B 60, 3224 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.3224
31.
31. E. R. Losilla, M. A. G. Aranda, S. Bruque, M. Paris, J. Sanz, and A. R. West, Chem. Mater. 10, 665 (1998).
http://dx.doi.org/10.1021/cm970648j
32.
32. P. S. Das, P. K. Chakraborty, B. Behera, and R. N. P. Choudhary, Physica B 395, 98 (2007).
http://dx.doi.org/10.1016/j.physb.2007.02.065
33.
33. S. Saha and T. P. Sinha, Phys. Rev. B 65, 134103 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134103
34.
34. J. C. Dyre and T. B. Schrbder, Rev. Mod. Phys. 72, 873 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.873
35.
35. A. Ghosh and A. Pan, Phys. Rev. Lett. 84, 2188 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2188
36.
36. D. L. Sidebottom, Phys. Rev. Lett. 82, 3653 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3653
37.
37. B. Roling, Solid State Ionics 105, 185 (1998).
http://dx.doi.org/10.1016/S0167-2738(97)00463-3
38.
38. F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, J. Phys. Chem. 78, 639 (1974).
http://dx.doi.org/10.1021/j100599a016
39.
39. J. R. Macdonald (Ed.), Impedance Spectroscopy (Wiley, New York, USA, 1987).
40.
40. A. Orliukas, A. Dindune, and Z. Kanepe, Solid State Ionics, 157, 177 (2003).
http://dx.doi.org/10.1016/S0167-2738(02)00206-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818971
Loading
/content/aip/journal/adva/3/8/10.1063/1.4818971
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4818971
2013-08-19
2016-12-06

Abstract

Lithium garnet LiLaZrO (LLZ) sintered at 1230 °C has received considerable importance in recent times as result of its high total (bulk + grain boundary) ionic conductivity of 5 × 10 S cm at room temperature. In this work we report Li transport process of LiLaZrWO ( = 0.3, 0.5) cubic lithium garnets. Among the investigated compounds, LiLaZrWO sintered relatively at lower temperature 1100 °C exhibits highest room temperature (30 °C) total (bulk + grain boundary) ionic conductivity of 7.89 × 10 S cm. The temperature dependencies of the bulk conductivity and relaxation frequency in the bulk are governed by the same activation energy. Scaling the conductivity spectra for both LiLaZrWO and LiLaZrWO sample at different temperatures merges on a single curve, which implies that the relaxation dynamics of charge carriers is independent of temperature. The shape of the imaginary part of the modulus spectra suggests that the relaxation processes are non-Debye in nature. The present studies supports the prediction of optimum Li concentration required for the highest room temperature Li conductivity in LiLaMO is around = 6.4 ± 0.1.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4818971.html;jsessionid=499A2d-HZtxsmC0AsyLsi0Eu.x-aip-live-02?itemId=/content/aip/journal/adva/3/8/10.1063/1.4818971&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4818971&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4818971'
Right1,Right2,Right3,