Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4818972
1.
1. W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, and T. M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).
http://dx.doi.org/10.1063/1.3097026
2.
2. S. F. Fan, J. N. Zhao, J. Guo, Q. Y. Yan, J. Ma, and H. H. Hng, Appl. Phys. Lett. 96, 182104 (2010).
http://dx.doi.org/10.1063/1.3427427
3.
3. J. M. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J. P. Feser, D. Xu, S. L. Singer, Z. X. Bian, A. Majumdar, J. E. Bowers, A. Shakouri, and A. C. Gossard, J. Appl. Phys. 108, 123702 (2010).
http://dx.doi.org/10.1063/1.3514145
4.
4. X. Yan, G. Joshi, W. S. Liu, Y. C. Lan, H. Wang, S. Y. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano. Lett. 11, 556560 (2011).
http://dx.doi.org/10.1021/nl104138t
5.
5. S. Johnsen, J. Q. He, J. Androulakis, V. P. Dravid, I. Todorov, D. Y. Chung, and M. G. Kanatzidis, J. Am. Chem. Soc. 133, 34603470 (2011).
http://dx.doi.org/10.1021/ja109138p
6.
6. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Z. Wang, D. Wang, G. Chen, and Z. F. Ren, Energy Environ. Sci. 5, 7543 (2012).
http://dx.doi.org/10.1039/c2ee21554c
7.
7. W. J. Xie, J. He, S. Zhu, X. L. Su, S. Y. Wang, T. Holgate, J. W. Graff, V. Ponnambalam, S. J. Poon, X. F. Tang, Q. J. Zhang, and T. M. Tritt, Acta Mater. 58, 47054713 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.05.005
8.
8. J. P. A. Makongo, D. K. Misra, X. Zhou, A. Pant, M. R. Shabetai, X. Su, C. Uher, K. L. Stokes, and P. F. P. Poudeu, J. Am. Chem. Soc. 133, 1884318852 (2011).
http://dx.doi.org/10.1021/ja206491j
9.
9. A. Minnich and G. Chen, Appl. Phys. Lett. 91, 073105 (2007).
http://dx.doi.org/10.1063/1.2771040
10.
10. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).
http://dx.doi.org/10.1021/nl8031982
11.
11. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo, J. Appl. Phys. 108, 124306 (2010).
http://dx.doi.org/10.1063/1.3518579
12.
12. A. Popescu and L. M. Woods, Appl. Phys. Lett. 97, 052102 (2010).
http://dx.doi.org/10.1063/1.3464288
13.
13. R. G. Yang and G. Chen, Phys. Rev. B 69, 195316 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.195316
14.
14. C. Dames and G. Chen, J. Appl. Phys. 95, 2 (2004).
http://dx.doi.org/10.1063/1.1631734
15.
15. R. G. Yang, G. Chen, M. Laroche, and Y. Taur, ASME J. Heat Transfer 127, 298306 (2005).
http://dx.doi.org/10.1115/1.1857941
16.
16. R. G. Yang, G. Chen and M. S. Dresselhaus, Phys. Rev. B 72, 125418 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125418
17.
17. J. Callaway, Phys. Rev. 113, 4 (1959).
http://dx.doi.org/10.1103/PhysRev.113.1046
18.
18. W. Kim, S. L. Singer, A. Majumdar, J. M. Zide, D. Klenov, A. C. Gossard and S. Stemmer, Nano Lett. 8, 7 (2008).
19.
19. M. S. Jeng, R. G. Yang, D. Song, and G. Chen, ASME J. Heat Transfer 130, 0424101 (2008).
http://dx.doi.org/10.1115/1.2818765
20.
20. Q. Hao, G. Zhu, G. Joshi, Z. Wang, A. Minnich, Z. F. Ren, and G. Chen, Appl. Phys. Lett. 97, 063109 (2010).
http://dx.doi.org/10.1063/1.3478459
21.
21. Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, Nano. Lett. 11, 2206 (2011).
http://dx.doi.org/10.1021/nl1045395
22.
22. P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.12581
23.
23. A. Alam, R. K. Chouhan, and A. Mookerjee, Phys. Rev. B 84, 224309 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.224309
24.
24. C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).
http://dx.doi.org/10.1063/1.365209
25.
25. C. W. Nan, J. Appl. Phys. 76, 1155 (1994).
http://dx.doi.org/10.1063/1.357839
26.
26. S. J. Poon and K. Limtragool, J. Appl. Phys. 110, 114306 (2011).
http://dx.doi.org/10.1063/1.3662947
27.
27. S. J. Poon, A. S. Peterson, and D. Wu, Appl. Phys. Lett. 102, 173110 (2013).
http://dx.doi.org/10.1063/1.4804150
28.
28. L. D. Chen, X. Y. Huang, M. Zhou, X. Shi, and W. B. Zhang, J. Appl. Phys. 99, 064305 (2006).
http://dx.doi.org/10.1063/1.2180432
29.
29. Z. Zamanipour and D. Vashaee, J. Appl. Phys. 112, 093714 (2012).
http://dx.doi.org/10.1063/1.4764919
30.
30. W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).
http://dx.doi.org/10.1063/1.2188251
31.
31. J. Androulakis, I. Todorov, J. Q. He, D. Y. Chung, V. Dravid, and M. Kanatzidis, J. Am. Chem. Soc. 133, 1092010927 (2011).
http://dx.doi.org/10.1021/ja203022c
32.
32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
33.
33. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
34.
34. C. F. Ying and R. Truell, J. Appl. Phys. 27, 1086 (1956).
http://dx.doi.org/10.1063/1.1722545
35.
35. N. G. Einspruch, E. J. Witterholt, and R. Truell, J. Appl. Phys. 31, 806 (1960).
http://dx.doi.org/10.1063/1.1735701
36.
36. A. Majumdar, ASME J. Heat Transfer 115, 7 (1993).
http://dx.doi.org/10.1115/1.2910673
37.
37. H. Li, X. Tang, and Q. Zhang, J. Electronic Materials 38, 7 (2009).
38.
38. Y. C. Lan, A. J. Minnich, G. Chen, and Z. F. Ren, Adv. Funct. Mater. 20, 357376, 2010.
http://dx.doi.org/10.1002/adfm.200901512
39.
39. K. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature, 489, 414 (2012).
http://dx.doi.org/10.1038/nature11439
40.
40. G. Chen, Phys. Rev. B. 57, 23 (1998).
41.
41. O. L. Anderson, J. Phys. Chem. Solids 24, 909917 (1963).
http://dx.doi.org/10.1016/0022-3697(63)90067-2
42.
42. H. Lee, MS thesis, MIT, Boston, MA (2005).
43.
43. M. S. Dresselhaus, G. Chen, Z. F. Ren, J. P. Fleurial, and P. Gogna, Second Annual Technical Report for NASA Contract No. NAS3-03108, 2005.
44.
44. J. L. Mi, X. B. Zhao, T. J. Zhu, and J. P. Tu, Appl. Phys. Lett. 91, 172116 (2007).
http://dx.doi.org/10.1063/1.2803847
45.
45. S. N. Girard, K. Schmidt-Rohr, T. C. Chasapis, E. Hatzikraniotis, B. Njegic, E. M. Levin, A. Rawal, K. M. ParaKevopoulos, and M. G. Kanatzidis, Adv. Funct. Mater. 23, 747757 (2013).
http://dx.doi.org/10.1002/adfm.201201944
46.
46. S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nano. Lett. 10, 2825 (2010).
http://dx.doi.org/10.1021/nl100743q
47.
47. T. Irie, Jpn. J. Appl. Phys. 5, 854 (1966).
http://dx.doi.org/10.1143/JJAP.5.854
48.
48. J. Yang, G. P. Meisner, and L. Chen, Appl. Phys. Lett. 85, 7 (2004).
http://dx.doi.org/10.1063/1.1767280
49.
49. J. Q. He, S. N. Girard, M. G. Kanatzidis, and V. P. Dravid, Adv. Funct, Mater. 20, 764772 (2010).
http://dx.doi.org/10.1002/adfm.200901905
50.
50. Y. L. Pei and Y. Liu, J. Alloys and Compounds. 514, 4044 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.10.036
51.
51. S. R. Culp, J. W. Simonson, S. J. Poon, V. Ponnambalam, J. Edwards, and T. M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).
http://dx.doi.org/10.1063/1.2959103
52.
52. Y. Kimura, H. Ueno, and Y. Mishima, J. Electronic Materials 38, 7 (2009).
http://dx.doi.org/10.1007/s11664-009-0710-x
53.
53. C. S. Birkel, J. E. Douglas, B. R. Letiere, G. Seward, N. Verma, Y. C. Zhang, T. M. Pollock, R. Seshadri, and G. D. Stucky, Phys. Chem. Chem. Phys. 15, 6990 (2013).
http://dx.doi.org/10.1039/c3cp50918d
54.
54. Y. W. Chai and Y. Kimura, Appl. Phys. Lett. 100, 033114 (2012).
http://dx.doi.org/10.1063/1.3679377
55.
55. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466479 (2009).
http://dx.doi.org/10.1039/b822664b
56.
56. M. A. S. Boff, G. L. F. Fraga, D. E. Brandao, A. A. Gomes, and T. A. Grandi, Phys. Stat. Sol. 154, 549 (1996).
http://dx.doi.org/10.1002/pssa.2211540207
57.
57. H. Özişik, K. Çolakoğlu, and H. B. Özişik, Fizika 16(2), 154 (2010).
58.
58. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, Materials Transactions 47(6), 14531457 (2006).
http://dx.doi.org/10.2320/matertrans.47.1453
59.
59.See supplementary material at http://dx.doi.org/10.1063/1.4818972 for thermal conductivity estimation of ZrNi2Sn. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4818972
Loading
/content/aip/journal/adva/3/8/10.1063/1.4818972
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4818972
2013-08-19
2016-09-28

Abstract

To further reduce the lattice thermal conductivity of thermoelectric materials, the technique of embedding nano-inclusions into bulk matrix materials, in addition to point defect scattering via alloying, was widely applied. Differential Effective Medium (DEM) method was employed to calculate two-phase heterogeneous systems. However, in most effective medium treatment, the interface scattering of matrix phonons by embedded nanoparticle was underestimated by adopting particle's projected area as scattering cross-section. Herein, modified cross-section calculations, as well as grain sizes dispersions, are applied in DEM, with the calculations then validated by comparing with Monte-Carlo simulations and existing experimental data. Predictions of lattice thermal conductivity reduction on in-situ formed Full Heusler (FH)/Half Heusler (HH) nano/matrix system are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4818972.html;jsessionid=MG9fXF1mXlGYnncFdm6Dplly.x-aip-live-06?itemId=/content/aip/journal/adva/3/8/10.1063/1.4818972&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4818972&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4818972'
Right1,Right2,Right3,