Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, and T. M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).
2. S. F. Fan, J. N. Zhao, J. Guo, Q. Y. Yan, J. Ma, and H. H. Hng, Appl. Phys. Lett. 96, 182104 (2010).
3. J. M. Zide, J.-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J. P. Feser, D. Xu, S. L. Singer, Z. X. Bian, A. Majumdar, J. E. Bowers, A. Shakouri, and A. C. Gossard, J. Appl. Phys. 108, 123702 (2010).
4. X. Yan, G. Joshi, W. S. Liu, Y. C. Lan, H. Wang, S. Y. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano. Lett. 11, 556560 (2011).
5. S. Johnsen, J. Q. He, J. Androulakis, V. P. Dravid, I. Todorov, D. Y. Chung, and M. G. Kanatzidis, J. Am. Chem. Soc. 133, 34603470 (2011).
6. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Z. Wang, D. Wang, G. Chen, and Z. F. Ren, Energy Environ. Sci. 5, 7543 (2012).
7. W. J. Xie, J. He, S. Zhu, X. L. Su, S. Y. Wang, T. Holgate, J. W. Graff, V. Ponnambalam, S. J. Poon, X. F. Tang, Q. J. Zhang, and T. M. Tritt, Acta Mater. 58, 47054713 (2010).
8. J. P. A. Makongo, D. K. Misra, X. Zhou, A. Pant, M. R. Shabetai, X. Su, C. Uher, K. L. Stokes, and P. F. P. Poudeu, J. Am. Chem. Soc. 133, 1884318852 (2011).
9. A. Minnich and G. Chen, Appl. Phys. Lett. 91, 073105 (2007).
10. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).
11. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo, J. Appl. Phys. 108, 124306 (2010).
12. A. Popescu and L. M. Woods, Appl. Phys. Lett. 97, 052102 (2010).
13. R. G. Yang and G. Chen, Phys. Rev. B 69, 195316 (2004).
14. C. Dames and G. Chen, J. Appl. Phys. 95, 2 (2004).
15. R. G. Yang, G. Chen, M. Laroche, and Y. Taur, ASME J. Heat Transfer 127, 298306 (2005).
16. R. G. Yang, G. Chen and M. S. Dresselhaus, Phys. Rev. B 72, 125418 (2005).
17. J. Callaway, Phys. Rev. 113, 4 (1959).
18. W. Kim, S. L. Singer, A. Majumdar, J. M. Zide, D. Klenov, A. C. Gossard and S. Stemmer, Nano Lett. 8, 7 (2008).
19. M. S. Jeng, R. G. Yang, D. Song, and G. Chen, ASME J. Heat Transfer 130, 0424101 (2008).
20. Q. Hao, G. Zhu, G. Joshi, Z. Wang, A. Minnich, Z. F. Ren, and G. Chen, Appl. Phys. Lett. 97, 063109 (2010).
21. Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, Nano. Lett. 11, 2206 (2011).
22. P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).
23. A. Alam, R. K. Chouhan, and A. Mookerjee, Phys. Rev. B 84, 224309 (2011).
24. C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).
25. C. W. Nan, J. Appl. Phys. 76, 1155 (1994).
26. S. J. Poon and K. Limtragool, J. Appl. Phys. 110, 114306 (2011).
27. S. J. Poon, A. S. Peterson, and D. Wu, Appl. Phys. Lett. 102, 173110 (2013).
28. L. D. Chen, X. Y. Huang, M. Zhou, X. Shi, and W. B. Zhang, J. Appl. Phys. 99, 064305 (2006).
29. Z. Zamanipour and D. Vashaee, J. Appl. Phys. 112, 093714 (2012).
30. W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).
31. J. Androulakis, I. Todorov, J. Q. He, D. Y. Chung, V. Dravid, and M. Kanatzidis, J. Am. Chem. Soc. 133, 1092010927 (2011).
32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
33. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
34. C. F. Ying and R. Truell, J. Appl. Phys. 27, 1086 (1956).
35. N. G. Einspruch, E. J. Witterholt, and R. Truell, J. Appl. Phys. 31, 806 (1960).
36. A. Majumdar, ASME J. Heat Transfer 115, 7 (1993).
37. H. Li, X. Tang, and Q. Zhang, J. Electronic Materials 38, 7 (2009).
38. Y. C. Lan, A. J. Minnich, G. Chen, and Z. F. Ren, Adv. Funct. Mater. 20, 357376, 2010.
39. K. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature, 489, 414 (2012).
40. G. Chen, Phys. Rev. B. 57, 23 (1998).
41. O. L. Anderson, J. Phys. Chem. Solids 24, 909917 (1963).
42. H. Lee, MS thesis, MIT, Boston, MA (2005).
43. M. S. Dresselhaus, G. Chen, Z. F. Ren, J. P. Fleurial, and P. Gogna, Second Annual Technical Report for NASA Contract No. NAS3-03108, 2005.
44. J. L. Mi, X. B. Zhao, T. J. Zhu, and J. P. Tu, Appl. Phys. Lett. 91, 172116 (2007).
45. S. N. Girard, K. Schmidt-Rohr, T. C. Chasapis, E. Hatzikraniotis, B. Njegic, E. M. Levin, A. Rawal, K. M. ParaKevopoulos, and M. G. Kanatzidis, Adv. Funct. Mater. 23, 747757 (2013).
46. S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nano. Lett. 10, 2825 (2010).
47. T. Irie, Jpn. J. Appl. Phys. 5, 854 (1966).
48. J. Yang, G. P. Meisner, and L. Chen, Appl. Phys. Lett. 85, 7 (2004).
49. J. Q. He, S. N. Girard, M. G. Kanatzidis, and V. P. Dravid, Adv. Funct, Mater. 20, 764772 (2010).
50. Y. L. Pei and Y. Liu, J. Alloys and Compounds. 514, 4044 (2012).
51. S. R. Culp, J. W. Simonson, S. J. Poon, V. Ponnambalam, J. Edwards, and T. M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).
52. Y. Kimura, H. Ueno, and Y. Mishima, J. Electronic Materials 38, 7 (2009).
53. C. S. Birkel, J. E. Douglas, B. R. Letiere, G. Seward, N. Verma, Y. C. Zhang, T. M. Pollock, R. Seshadri, and G. D. Stucky, Phys. Chem. Chem. Phys. 15, 6990 (2013).
54. Y. W. Chai and Y. Kimura, Appl. Phys. Lett. 100, 033114 (2012).
55. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466479 (2009).
56. M. A. S. Boff, G. L. F. Fraga, D. E. Brandao, A. A. Gomes, and T. A. Grandi, Phys. Stat. Sol. 154, 549 (1996).
57. H. Özişik, K. Çolakoğlu, and H. B. Özişik, Fizika 16(2), 154 (2010).
58. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, Materials Transactions 47(6), 14531457 (2006).
59.See supplementary material at for thermal conductivity estimation of ZrNi2Sn. [Supplementary Material]

Data & Media loading...


Article metrics loading...



To further reduce the lattice thermal conductivity of thermoelectric materials, the technique of embedding nano-inclusions into bulk matrix materials, in addition to point defect scattering via alloying, was widely applied. Differential Effective Medium (DEM) method was employed to calculate two-phase heterogeneous systems. However, in most effective medium treatment, the interface scattering of matrix phonons by embedded nanoparticle was underestimated by adopting particle's projected area as scattering cross-section. Herein, modified cross-section calculations, as well as grain sizes dispersions, are applied in DEM, with the calculations then validated by comparing with Monte-Carlo simulations and existing experimental data. Predictions of lattice thermal conductivity reduction on in-situ formed Full Heusler (FH)/Half Heusler (HH) nano/matrix system are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd