Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Mottler, LEDs for Lighting Applications (John Wiley and Sons, 2009).
2. S. Nakamura and G. Falso, The Blue Laser Diodes (Springer, Berlin, 1993).
3. H. Morkoc, Handbook of Nitride Semiconductors and Devices (Vols. 1–3) (Wiley-Vch, 2008, 2009).
4. M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
5. S. Maroldt, C. Haupt, W. Pletschen, S. Müller, R. Quay, O. Ambacher, C. Schippel, and F. Schwierz, Jpn. J. Appl. Phys. 48, 04C083 (2009).
6. M. Kuraguchi, Y. Takeda, T. Suzuki, M. Hirose, K. Tsuda, W. Saito, Y. Saito, and I. Omura, Phys. Stat. Sol. (a) 204, 2010 (2007).
7. T. Oka, and T. Nozawa, IEEE Electron Device Lett. 29, 668 (2008).
8. W. Saito, Y. Takeda, M. Kuraguchi, K. Tsuda, and I. Omura, IEEE Trans. Electron Devices 53, 356 (2006).
9. W. Chen, K.-Y. Wong, W. Huang, and K. J. Chen, Appl. Phys. Lett. 92, 253501 (2008).
10. Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, IEEE Electron Device Lett. 26, 435 (2005).
11. Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, IEEE Trans. Electron Devices 53, 2207 (2006).
12. D. Song, J. Liu, Z. Cheng, W. C. J. Tang, K. M. Lau, and K. J. Chen, IEEE Electron Device Lett. 28, 189 (2007).
13. T. Palacios, C.-S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, IEEE Electron Device Lett. 27, 428 (2006).
14. C. S. Suh, IEEE IDEM Tech. Digest 35, 3 (2006).
15. A. Basu, Int. Conf. Compound Semiconductor MANTECH Tech Digest (2008), pp. 253.
16. T. Fujii, N. Tsuyukuchi, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 46, 115 (2007).
17. T. Tsuyukuchi, K. Nagamatsu, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasakim, Jpn. J. Appl. Phys. 45, L319 (2006).
18. M. Shimizu, G. Piano, M. Inada, S. Yagi, Y. Yano, and N. Akutsu, Jpn. J. Appl. Phys. 47, 2817 (2008).
19. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, IEEE Trans. Electron Devices 54, 3393 (2007).
20. T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, IEEE Electron Device Lett. 28, 549 (2007).
21. T. J. Anderson, M. J. Tadjer, A. Mastro, J. K. Hite, K. D. Hobart, C. R. Eddy, Jr., and F. J. Kub, IEEE Electron Device Lett. 30, 1251 (2009).
22. T. Fujiwara, S. Rajan, S. Keller, M. Higashiwaki, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Express 2, 011001 (2009).
23. M. Kuroda, H. Ishida, T. Ueda, and T. Tanaka, J. Appl. Phys. 102, 093703 (2007).
24. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, Hidetoshi Ishida, M. Yanagihara, and T. Ueda, IEEE Trans. Electron Devices. 54, 3393 (2007).
25. Y. Uemoto, T. Ueda, T. Tanaka, and D. Ueda, Proc. SPIE 7216, 721606 (2009).
26. T. Morita, M. Yanagihara, H. Ishida, M. Hikita, K. Kaibara, H. Matsuo, Y. Uemoto, T. Ueda, T. Tanaka, and D. Ueda, IEDM (2007).
27. J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010).
28. P. B. Klein, S. C. Binari, K. Ikossi, A. E. Wickenden, D. D. Koleske, and R. L. Henry, Appl. Phys. Lett., 79, 3527 (2001).
29. S. Haffouz, H. Tang, J. A. Bardwell, E. M. Hsu, J. B. Webb, and S. Rolfe, Solid-State Electron. 49, 802 (2005).
30. Y. C. Choi, J. Shi, M. Pophristic, M. G. Spencer, and L. F. Eastman, J. Vac. Sci. Technol. B 25, 1836 (2005).
31. N. Ikeda, J. Li, H. Takehara, T. Wada, and S. Yoshida, J. Crystal Growth 275, e1091 (2005).
32. L. Huang, S. Yeh, C. Lee, H. Tang, J. Bardwell, and J. B. Webb, IEEE Electron Dev. Lett. 29, 284 (2008).
33. W. Schockley, Electrons and Holes in Semiconductors with Applications to Transistor Electronics (D. Van Nostrand, New York, 1950).
34. S. M. Sze, Physics of Semiconductor Devices, 2nd Edition (John Wiley and Sons, New York, 1981), p. 22.
35. S. Martin and G. Jacob, Acta Electronica 25, 123 (1983).
36. K. Kitagawa, N. Noto, T. Takahashi, and T. Takenaka, in Semi-Insulating III-V Materials, edited by H. Kukimoto and S. Miyazawa (Ohmsha, Tokyo, 1986), pp. 237.
37. K. Kainosho, O. Oda, G. Hirt, and G. Mueller, Mat. Res. Soc. Symp. Proc. 235, 101 (1994).
38. M. Uchida and O. Oda, J. Jpn. Assoc. Crystal Growth 28, 37 (2001).
39. O. Oda, Compound Semiconductor Materials and Characterization (World Scientific Publ., 2007), p. 15 and p. 233.
40. S. M. Sze, Physics of Semiconductor Devices, 2nd Edition (John Wiley and Sons, New York, 1981), p. 322.
41. H. Yamamoto, O. Oda, M. Seiwa, M. Taniguchi, H. Nakata, and M. Ejima, J. Electrochem. Soc. 136, 3098 (1989).
42. H. Hasegawa and H. Ohno, J. Vac. Sci. B 4, 1130 (1986).

Data & Media loading...


Article metrics loading...



The conditions for preparing normally-off GaN devices incorporating semi-insulating (SI) GaN materials are explored. The properties of SI GaN where carbon behaves as a deep level acceptor are predicted using a Shockley diagram. Metal-oxide-semiconductor (MOS) structures based upon these on SI-GaN layers are designed. The bandgap alignment of these structures is analyzed using Poisson equations. Normally-off operation is shown to be possible in devices featuring a thin n-GaN layer and SI-GaN layer, because of a higher conduction band energy. It is also shown that higher threshold voltage can be achieved by reducing the carrier concentration of the n-GaN channel layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd