Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/3/8/10.1063/1.4819270
1.
1. B. E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications 1999.
2.
2. P. Simon and Y. Gogotsi, “Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems,” Acc. Chem. Res. 46, 10941103 (2012).
http://dx.doi.org/10.1021/ar200306b
3.
3. J. Miller and A. Burke, “Electrochemical capacitors: challenges and opportunities for real-world applications,” Electrochem. Soc. Inter. 17, 5357 (2008).
4.
4. A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4, 36677 (2005).
http://dx.doi.org/10.1038/nmat1368
5.
5. R. Kötz, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 24832498 (2000).
http://dx.doi.org/10.1016/S0013-4686(00)00354-6
6.
6. X. Zhao, B. M. Sánchez, P. J. Dobson, and P. S. Grant, “The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices,” Nanoscale 3, 83955 (2011).
http://dx.doi.org/10.1039/c0nr00594k
7.
7. P. J Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Crude, and R. Carter, “Energy storage in electrochemical capacitors: Designing functional materials to improve performance,” Energy Environ. Sci. 3, 12381251 (2010).
http://dx.doi.org/10.1039/c0ee00004c
8.
8. A. Burke, “R&D considerations for the performance and application of electrochemical capacitors,” Electrochim. Acta 53, 10831091 (2007).
http://dx.doi.org/10.1016/j.electacta.2007.01.011
9.
9. E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon 39, 937950 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00183-4
10.
10. S. W Lee, B. M. Gallant, H. R. Byon, P. T Hammond, and Y. Shao-Horn, “Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors,” Energy Environ. Sci. 4, 19721985 (2011).
http://dx.doi.org/10.1039/c0ee00642d
11.
11. L. L. Zhang, R. Zhou, and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes,” J. Mater. Chem. 20, 59835992 (2010).
http://dx.doi.org/10.1039/c000417k
12.
12. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, “Preparation of Tunable 3D Pillared Carbon NanotubeÀGraphene Networks for High-Performance Capacitance,” Chem. Mater. 23, 48104816 (2011).
http://dx.doi.org/10.1021/cm2021214
13.
13. J. R. Millerand and P. Simon, “Materials science. Electrochemical capacitors for energy management,” Science 321, 6512 (2008).
http://dx.doi.org/10.1126/science.1158736
14.
14. W. Wei, X. Cui, W. Chen, and D. G. Ivey, “Manganese oxide-based materials as electrochemical supercapacitor electrodes,” Chem. Soc. rev. 40, 1697721 (2011).
http://dx.doi.org/10.1039/c0cs00127a
15.
15. J. Liu, J. Essner, and J. Li, “Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays,” Chem. Mater. 22, 50225030 (2010).
http://dx.doi.org/10.1021/cm101591p
16.
16. C.-Y. Chen, C.-Y. Fan, M.-T. Lee, and J.-K. Chang, “Tightly connected MnO2–graphene with tunable energy density and power density for supercapacitor applications,” J. Mater. Chem. 22, 76977700 (2012).
http://dx.doi.org/10.1039/c2jm16707g
17.
17. M. Sang-Bok, N. Kyung-Wan, Y. Won-Sub, Y. Xiao-Qing, A. Kyun-Young, O. Ki-Hwan, and K. Kwang-Bum, “Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications,” J. Power Sources 178, 483489 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2007.12.027
18.
18. A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, and J. W Long, “Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors,” Nano lett. 7, 281286 (2007).
http://dx.doi.org/10.1021/nl062263i
19.
19. R. I. Jafri, A. K Mishra, and S. Ramaprabhu, “Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte,” J. Mater. Chem. 21, 1760117605 (2011).
http://dx.doi.org/10.1039/c1jm13191e
20.
20. J. Kim, K. H. Lee, L. J. Overzet, and G. S. Lee, “Synthesis and Electrochemical Properties of Spin-Capable Carbon Nanotube Sheet/MnO,” Nano Lett. 11, 26112617 (2011).
http://dx.doi.org/10.1021/nl200513a
21.
21. H. Wang, C. Li-Feng, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, “Mn3O4 -Graphene Hybrid as a High Capacity Anode Material for Lithium Ion Batteries,” J. Am. Chem. Soc. 132, 1397813980 (2010).
http://dx.doi.org/10.1021/ja105296a
22.
22. J. Zhu and J He, “Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors,” ACS appl. mater. interfaces 4, 17701776 (2012).
http://dx.doi.org/10.1021/am3000165
23.
23. L. Li, Z.-Y. Qin, L.-F. Wang, H.-J. Liu, and M.-F Zhu, “Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor,” J. Nanoparticle Res. 12, 23492353 (2010).
http://dx.doi.org/10.1007/s11051-010-9980-8
24.
24. M. D. Stoller, S. Park, Y. Zhu, J An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano lett. 8, 34983502 (2008).
http://dx.doi.org/10.1021/nl802558y
25.
25. Y. Wang, Z. Q. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y Chen, “Supercapacitor Devices Based on Graphene Materials,” J. Phy. Chem. C 113, 1310313107 (2009).
http://dx.doi.org/10.1021/jp902214f
26.
26. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H-M Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. mater. 10, 424428 (2011).
http://dx.doi.org/10.1038/nmat3001
27.
27. Y. Chen, X. Zhang, P. Yu, and Y Ma, “Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors,” J. Power Sources 195, 30313035 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2009.11.057
28.
28. H. Ji, L. Zhang, M. Pettes, H Li, and S. Chen, “Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes,” Nano lett. 12, 2446−2451 (2012).
http://dx.doi.org/10.1021/nl300528p
29.
29. X. Huang, X Qi, F. Boey, and H. Zhang, “Graphene-based composites,” Chem. Soc. rev. 41, 666686 (2012).
http://dx.doi.org/10.1039/c1cs15078b
30.
30. Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang, and X. Duan, “One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials,” Nano Res. 6, 6576 (2012).
http://dx.doi.org/10.1007/s12274-012-0284-4
31.
31. S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene oxide−MnO2 nanocomposites for supercapacitors,” Acs Nano 4, 28222830 (2010).
http://dx.doi.org/10.1021/nn901311t
32.
32. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, and F. Wei, “Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes,” Carbon 48, 38253833 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.06.047
33.
33. Q. Cheng, J. Tang, J. Maa, H. Zhanga, N. Shinyaa, and L-C. Qinc, “Graphene and nanostructured MnO2 composite electrodes for supercapacitors,” Carbon 49, 29172925 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.02.068
34.
34. Z. Li, J. Wang, S. Liu, X. Liu, and S. Yang, “Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors,” J. Power Sources 196, 81608165 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2011.05.036
35.
35. Y. Qian, S. Lu, and F. Gao, “Preparation of MnO2/graphene composite as electrode material for supercapacitors,” J. Mater. Sci. 46, 35173522 (2011).
http://dx.doi.org/10.1007/s10853-011-5260-y
36.
36. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M. B. Chan-Park, C. M. Li, and P. Chen, “Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode,” Carbon 50, 48654870 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.06.014
37.
37. A. Bello, K. Makgopa, M Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, and N. Manyala, “Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications,” J. Mat. Sci. (2013).
http://dx.doi.org/10.1007/s10853-013-7471-x
38.
38. M. D. Stoller and Rodney S. Ruoff, “Best practice methods for determining an electrode material's performance for ultracapacitors,” Energy Environ. Sci. 3, 12941301 (2010).
http://dx.doi.org/10.1039/c0ee00074d
39.
39. R. B. Rakhi, W. Chen, D Cha, and H. N. Alshareef, “Nanostructured Ternary Electrodes for Energy-Storage Applications,” Adv. Energy Mater. 2, 381389 (2012).
http://dx.doi.org/10.1002/aenm.201100609
40.
40. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Comm. 143, 4757 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.03.052
41.
41. T. Gao, H. Fjellvåg, and P. A Norby, “comparison study on Raman scattering properties of α- and β-MnO2,” Analytica Chim. Acta 648, 235239 (2009).
http://dx.doi.org/10.1016/j.aca.2009.06.059
42.
42. Z. Ni, T. Yu, Z. Luo, Y. Wang, and L. Liu, “Probing charged impurities in suspended graphene using Raman spectroscopy,” ACS Nano 3, 569574 (2009).
http://dx.doi.org/10.1021/nn900130g
43.
43. L. Chen, L-J. Sun, F. Luan, Y. Liang, Y. Li, and X-X Liu, “Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles,” J. Power Sources 195, 37423747 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2009.12.036
44.
44. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Q. Ning, T. Y. Li, and F. Wei, “Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density,” Adv. Funct. Mater. 21, 23662375 (2011).
http://dx.doi.org/10.1002/adfm.201100058
45.
45. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, “3D macroporous graphene frameworks for supercapacitors with high energy and power densities,” ACS nano 6, 40208 (2012).
http://dx.doi.org/10.1021/nn3003345
http://aip.metastore.ingenta.com/content/aip/journal/adva/3/8/10.1063/1.4819270
Loading
/content/aip/journal/adva/3/8/10.1063/1.4819270
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/3/8/10.1063/1.4819270
2013-08-21
2016-12-08

Abstract

We have fabricated a symmetric electrochemical capacitor with high energy and power densities based on a composite of graphene foam (GF) with ∼80 wt% of manganese oxide (MnO) deposited by hydrothermal synthesis. Raman spectroscopy and X-ray diffraction measurements showed the presence of nanocrystalline MnO on the GF, while scanning and transmission electron microscopies showed needle-like manganese oxide coated and anchored onto the surface of graphene. Electrochemical measurements of the composite electrode gave a specific capacitance of 240 Fg at a current density of 0.1 Ag for symmetric supercapacitors using a two-electrode configuration. A maximum energy density of 8.3 Whkg was obtained, with power density of 20 kWkg and no capacitance loss after 1000 cycles. GF is an excellent support for pseudo-capacitive oxide materials such as MnO, and the composite electrode provided a high energy density due to a combination of double-layer and redox capacitance mechanisms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/3/8/1.4819270.html;jsessionid=Cgg7M4qC7u7ycHTDfNAKeQav.x-aip-live-06?itemId=/content/aip/journal/adva/3/8/10.1063/1.4819270&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/3/8/10.1063/1.4819270&pageURL=http://scitation.aip.org/content/aip/journal/adva/3/8/10.1063/1.4819270'
Right1,Right2,Right3,