Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications 1999.
2. P. Simon and Y. Gogotsi, “Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems,” Acc. Chem. Res. 46, 10941103 (2012).
3. J. Miller and A. Burke, “Electrochemical capacitors: challenges and opportunities for real-world applications,” Electrochem. Soc. Inter. 17, 5357 (2008).
4. A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4, 36677 (2005).
5. R. Kötz, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 24832498 (2000).
6. X. Zhao, B. M. Sánchez, P. J. Dobson, and P. S. Grant, “The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices,” Nanoscale 3, 83955 (2011).
7. P. J Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Crude, and R. Carter, “Energy storage in electrochemical capacitors: Designing functional materials to improve performance,” Energy Environ. Sci. 3, 12381251 (2010).
8. A. Burke, “R&D considerations for the performance and application of electrochemical capacitors,” Electrochim. Acta 53, 10831091 (2007).
9. E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon 39, 937950 (2001).
10. S. W Lee, B. M. Gallant, H. R. Byon, P. T Hammond, and Y. Shao-Horn, “Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors,” Energy Environ. Sci. 4, 19721985 (2011).
11. L. L. Zhang, R. Zhou, and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes,” J. Mater. Chem. 20, 59835992 (2010).
12. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, “Preparation of Tunable 3D Pillared Carbon NanotubeÀGraphene Networks for High-Performance Capacitance,” Chem. Mater. 23, 48104816 (2011).
13. J. R. Millerand and P. Simon, “Materials science. Electrochemical capacitors for energy management,” Science 321, 6512 (2008).
14. W. Wei, X. Cui, W. Chen, and D. G. Ivey, “Manganese oxide-based materials as electrochemical supercapacitor electrodes,” Chem. Soc. rev. 40, 1697721 (2011).
15. J. Liu, J. Essner, and J. Li, “Hybrid Supercapacitor Based on Coaxially Coated Manganese Oxide on Vertically Aligned Carbon Nanofiber Arrays,” Chem. Mater. 22, 50225030 (2010).
16. C.-Y. Chen, C.-Y. Fan, M.-T. Lee, and J.-K. Chang, “Tightly connected MnO2–graphene with tunable energy density and power density for supercapacitor applications,” J. Mater. Chem. 22, 76977700 (2012).
17. M. Sang-Bok, N. Kyung-Wan, Y. Won-Sub, Y. Xiao-Qing, A. Kyun-Young, O. Ki-Hwan, and K. Kwang-Bum, “Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications,” J. Power Sources 178, 483489 (2008).
18. A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, and J. W Long, “Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors,” Nano lett. 7, 281286 (2007).
19. R. I. Jafri, A. K Mishra, and S. Ramaprabhu, “Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte,” J. Mater. Chem. 21, 1760117605 (2011).
20. J. Kim, K. H. Lee, L. J. Overzet, and G. S. Lee, “Synthesis and Electrochemical Properties of Spin-Capable Carbon Nanotube Sheet/MnO,” Nano Lett. 11, 26112617 (2011).
21. H. Wang, C. Li-Feng, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, “Mn3O4 -Graphene Hybrid as a High Capacity Anode Material for Lithium Ion Batteries,” J. Am. Chem. Soc. 132, 1397813980 (2010).
22. J. Zhu and J He, “Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors,” ACS appl. mater. interfaces 4, 17701776 (2012).
23. L. Li, Z.-Y. Qin, L.-F. Wang, H.-J. Liu, and M.-F Zhu, “Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor,” J. Nanoparticle Res. 12, 23492353 (2010).
24. M. D. Stoller, S. Park, Y. Zhu, J An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano lett. 8, 34983502 (2008).
25. Y. Wang, Z. Q. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y Chen, “Supercapacitor Devices Based on Graphene Materials,” J. Phy. Chem. C 113, 1310313107 (2009).
26. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H-M Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. mater. 10, 424428 (2011).
27. Y. Chen, X. Zhang, P. Yu, and Y Ma, “Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors,” J. Power Sources 195, 30313035 (2010).
28. H. Ji, L. Zhang, M. Pettes, H Li, and S. Chen, “Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes,” Nano lett. 12, 2446−2451 (2012).
29. X. Huang, X Qi, F. Boey, and H. Zhang, “Graphene-based composites,” Chem. Soc. rev. 41, 666686 (2012).
30. Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang, and X. Duan, “One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials,” Nano Res. 6, 6576 (2012).
31. S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene oxide−MnO2 nanocomposites for supercapacitors,” Acs Nano 4, 28222830 (2010).
32. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, and F. Wei, “Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes,” Carbon 48, 38253833 (2010).
33. Q. Cheng, J. Tang, J. Maa, H. Zhanga, N. Shinyaa, and L-C. Qinc, “Graphene and nanostructured MnO2 composite electrodes for supercapacitors,” Carbon 49, 29172925 (2011).
34. Z. Li, J. Wang, S. Liu, X. Liu, and S. Yang, “Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors,” J. Power Sources 196, 81608165 (2011).
35. Y. Qian, S. Lu, and F. Gao, “Preparation of MnO2/graphene composite as electrode material for supercapacitors,” J. Mater. Sci. 46, 35173522 (2011).
36. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M. B. Chan-Park, C. M. Li, and P. Chen, “Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode,” Carbon 50, 48654870 (2012).
37. A. Bello, K. Makgopa, M Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, and N. Manyala, “Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications,” J. Mat. Sci. (2013).
38. M. D. Stoller and Rodney S. Ruoff, “Best practice methods for determining an electrode material's performance for ultracapacitors,” Energy Environ. Sci. 3, 12941301 (2010).
39. R. B. Rakhi, W. Chen, D Cha, and H. N. Alshareef, “Nanostructured Ternary Electrodes for Energy-Storage Applications,” Adv. Energy Mater. 2, 381389 (2012).
40. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Comm. 143, 4757 (2007).
41. T. Gao, H. Fjellvåg, and P. A Norby, “comparison study on Raman scattering properties of α- and β-MnO2,” Analytica Chim. Acta 648, 235239 (2009).
42. Z. Ni, T. Yu, Z. Luo, Y. Wang, and L. Liu, “Probing charged impurities in suspended graphene using Raman spectroscopy,” ACS Nano 3, 569574 (2009).
43. L. Chen, L-J. Sun, F. Luan, Y. Liang, Y. Li, and X-X Liu, “Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles,” J. Power Sources 195, 37423747 (2010).
44. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Q. Ning, T. Y. Li, and F. Wei, “Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density,” Adv. Funct. Mater. 21, 23662375 (2011).
45. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, “3D macroporous graphene frameworks for supercapacitors with high energy and power densities,” ACS nano 6, 40208 (2012).

Data & Media loading...


Article metrics loading...



We have fabricated a symmetric electrochemical capacitor with high energy and power densities based on a composite of graphene foam (GF) with ∼80 wt% of manganese oxide (MnO) deposited by hydrothermal synthesis. Raman spectroscopy and X-ray diffraction measurements showed the presence of nanocrystalline MnO on the GF, while scanning and transmission electron microscopies showed needle-like manganese oxide coated and anchored onto the surface of graphene. Electrochemical measurements of the composite electrode gave a specific capacitance of 240 Fg at a current density of 0.1 Ag for symmetric supercapacitors using a two-electrode configuration. A maximum energy density of 8.3 Whkg was obtained, with power density of 20 kWkg and no capacitance loss after 1000 cycles. GF is an excellent support for pseudo-capacitive oxide materials such as MnO, and the composite electrode provided a high energy density due to a combination of double-layer and redox capacitance mechanisms.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd